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Imperative Programming

impero

Definition

Imperative programming is where programs are described as a
series of statements or commands to manipulate mutable state or
cause externally observable effects.

States may take the form of a mapping from variable names to
their values, or even a model of a CPU state with a memory model
(for example, in an assembly language).
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L: A simple imperative programming language

Consider the vocabulary of basic arithmetic:
@ Constant symbols: 0,1,2,...
@ Function symbols: +, %,...
@ Predicate symbols: <, <, >/|,...

@ An (arithmetic) expression is a term over this vocabulary.

@ A boolean expression is a predicate formula over this
vocabulary.
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expression.
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The language L

The language L is a simple imperative programming language
made up of four statements:
Assignment: x:=e
where x is a variable and e is an arithmetic
expression.
Sequencing: P;Q
Conditional: if g then P else Q fi
where g is a boolean expression.
While: while g do P od



Example

Factorial in £

I :=0;

m:=1;

while i < N do
=14+ 1;
m:=mxi

od
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Hoare Logic

We are going to define what's called a Hoare Logic for L to allow
us to prove properties of our program.
We write a Hoare triple judgement as:

{v} P {0}

Where ¢ and v are logical formulae about states, called assertions,
and P is a program. This triple states that if the program P
terminates and it successfully evaluates from a starting state
satisfying the precondition ¢, then the result state will satisfy the
postcondition 1.



Example

Hoare triple: Examples

{(x=0)}x:=1{(x=1)}
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Hoare triple: Examples

{(x=0)}x:=1{(x=1)}
{(x =1499)} x := x+ 1 {(x = 500)}




Hoare triple: Examples

Example
{(x=0}x:=1{(x=1)}
{(x =1499)} x := x+ 1 {(x = 500)}

{(x>0)}y=0-x{(y <0)A(x#y)}




Example

Hoare triple: Factorial Examples

{N >0}
i:=0;
m:=1,
while i < N do
Ii=i+1;
m:=msxi
od

{m= NI}




Summary

@ L: A simple imperative programming language
@ Hoare triples (SYNTAX)
@ Hoare logic (PROOF)

@ Semantics for Hoare logic
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Motivation

Question

We know what we want informally; how do we establish when a
triple is valid?

@ Develop a semantics, OR

@ Derive the triple in a syntactic manner (i.e. Hoare proof)

Hoare logic consists of one axiom and four inference rules for
deriving Hoare triples.



Assignment

(assign)
{wle/x]} x = e{e}

Intuition:

If x has property ¢ after executing the assignment; then e must

have property ¢ before executing the assignment



Example

Assignment: Example

{(y =01 x:=y{(x=0)}
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Assignment: Example

{(y =01 x:=y{(x=0)}
{ px=yilx=y)}
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Assignment: Example

Example
{(y =0)}x:=y{(x=0)}
{(y=y)ix=y{lx=y)}
{ Ix=1{(x<2)




Example

Assignment: Example

{(r=0}x=y{(x=0)}
{(r=y)x=y{lx=y)}
{1<2)}x:=1{(x<2)}
{(r=3)x=y{(x>2)}




Assignment: Example

Example
{(r=0)}x:=y{(x=0)}
{(r=y)x=y{lx=y)}
{1<2)tx=1{(x<2)}

{(y =3)}x:=y{(x>2)}  Problem!




Sequence

{et P{v}  {v}Q{p}
{0} P; Q{p}

Intuition:
If the postcondition of P matches the precondition of @ we can
sequentially combine the two program fragments



Example

{

Sequence: Example




Example

{

Sequence: Example

bx = 0{(x=0)}

{(x=0)}y :=0{(x=y)}

{ tx =0y =0{(x=y)}

(seq)




Sequence: Example

Example

{(0=0)}x:=0{(x=0)} {(x=0)}y:=0{(x=y)}

{(0=0)}x:=0;y :=0{(x = y)}

(seq)




Conditional

{pngtP{v}  {pn-g}Q{v}
{¢}if g then P else Q fi{¢}

(if)

Intuition:
@ When a conditional is executed, either P or Q will be
executed.
@ If ¢ is a postcondition of the conditional, then it must be a
postcondition of both branches

@ Likewise, if ¢ is a precondition of the conditional, then it must
be a precondition of both branches

@ Which branch gets executed depends on g, so we can assume
g to be a precondition of P and —g to be a precondition of Q.



While

{voNgtPiv}
{¢} while g do P od{p A =g}

(loop)

Intuition:

@  is a loop invariant. |t must be both a pre- and
postcondition of P, so that sequences of Ps can be run
together.

@ If the while loop terminates, g cannot hold.
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need to insert ordinary logical reasoning into our Hoare logic
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Consequence

There is one more rule, called the rule of consequence, that we
need to insert ordinary logical reasoning into our Hoare logic
proofs:

o =  A{ptP{Y} Y=
{¢'} P{Y'}

(cons)

Intuition:

@ Adding assertions to the precondition makes it more likely the
postcondition will be reached

@ Removing assertions from the postcondition makes it more
likely the postcondition will be reached

@ If you can reach the postcondition initially, then you can reach
it in the more likely scenario



Example

Back to Assignment Example

{(y =3)}x:=y{(x>2)}  Problem!




Example

Back to Assignment Example

{(y =3)}x:=y{(x>2)}  Problem!

{(y > 2)px = y{(x > 2)}(assign)



Example

Back to Assignment Example

{(y =3)}x:=y{(x>2)}  Problem!

{(y = 3)}x := y{(x > 2)}(assign, cons)
{(y > 2)px = y{(x > 2)}(assign)



Factorial Example

Let's verify the Factorial program using our Hoare rules:

{N >0}
i:=0;
m:=1;
while i # N do
i=i+1;
m:=mxi
od
{m= N}

{ongt P{y} {pn—g} Q{¥}

{¢} if g then P else Q fi {¢}

{olx:=el} x:=e {¢}

{pAg} P{p}

{¢} while g do P od {¢ A —g}

{e} P{a}  {a} Q{¢}

{v} P Q {¥}

=9 {o}P{y} =9
{¢'} P {4}
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Factorial Example

Let's verify the Factorial program using our Hoare rules:
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m:=1;
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Let's verify the Factorial program using our Hoare rules:
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Practice Exercise
Example

m:=1;
n:=1;
i=1;
while i < N do
t = m;

m = n;
n:=m-+t;
i=i+1
od




Practice Exercise
Example

m:=1;
n:=1;
i=1;
while i < N do
t = m;

m = n;
n:=m-+t;
I=i4+1
od

@ What does this £ program P compute?

@ What is a valid Hoare triple {¢}P{%} of this program?

@ Prove using the inference rules and consequence axiom that
this Hoare triple is valid.
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Recall

If R and S are binary relations, then the relational composition
of Rand S, R; S is the relation:

R;S :={(a,c) : 3b such that (a,b) € R and (b,c) € S}

If RC Ax B is a relation, and X C A, then the image of X
under R, R(X) is the subset of B defined as:

R(X) :={b € B : Ja inX such that (a, b) € R}.



Informal semantics

Hoare logic gives a proof of {p} P{¢}, thatis: - {p} P{¢}
(axiomatic semantics)

How do we determine when {¢©} P {¢} is valid, that is:
= {e} P{y}?



Informal semantics

Hoare logic gives a proof of {p} P{¢}, thatis: - {p} P{¢}
(axiomatic semantics)

How do we determine when {¢©} P {¢} is valid, that is:
= {e} P{y}?

If © holds in a state of some computational model
then ¢ holds in the state reached after a successful execution of P.
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What is a program?
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Informal semantics: Programs

What is a program?

A partial function mapping system states to system states



Informal semantics: Programs

What is a program?

A relation between system states
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Informal semantics: States

What is a state of a computational model?

Two approaches:
o Concrete: from a physical perspective

o States are memory configurations, register contents, etc.
o Store of variables and the values associated with them

@ Abstract: from a mathematical perspective

o The pre-/postcondition predicates hold in a state
= States are logical interpretations (Model + Environment)
e There is only one model of interest: standard interpretations of
arithmetical symbols
= States are fully determined by environments
= States are functions that map variables to values



Informal semantics: States

x<+0
y<+0
z+0

x <1
y+1

x<+<0
y<+1
z+ 2

x<+1
y+1

State space (ENV)

x <+ 0
y<+«1
z<+0

x <3
y <2

X 2
y 2




Informal semantics: States and Programs

Vs

State space (ENV)

x <3
y <2
/z<_1

x<+0
y<+0
z+0

x<+1
y+1
z<+ 2

x <1

x <+ 0
y<+«1
z<+0

/

X 2
y 2
z 2

.

N




Informal semantics:

States and Programs




Semantics for L

An environment or state is a function from variables to numeric
values. We denote by ENV the set of all environments.

NB

An environment, 1), assigns a numeric value [e]" to all expressions
e, and a boolean value [b]" to all boolean expressions b.




Semantics for L

An environment or state is a function from variables to numeric
values. We denote by ENV the set of all environments.

NB

An environment, 1), assigns a numeric value [e]" to all expressions
e, and a boolean value [b]" to all boolean expressions b.

Given a program P of L, we define [P] to be a binary relation on
ENV in the following manner...



(m,7') € [x == e]

Assignment

if, and only if 7' = n[x — [e]"]



Assignment: [z :=

2]

State space (ENV)

x <+ 0
<\yeo
z<+0
x<+1 x<+1
yel|—>|y+1
z+1 z4+ 2
x<+0
}z/:; ‘\x<—0

y<+1
z+0

x <+ 3 /

y<+2
z+1

X 2
y<+<2
z+ 2




Sequencing

[P: Q1 =PI 1]

where, on the RHS,

; is relational composition.



Conditional, first attempt

[if b then P else Q fi] = { %g]]]] i [[b]rth:e e



Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of ENv:

(b) = {n : [6]" = true}

This can be extended to a binary relation (i.e. a program):

(61 = {(n,n) - n e (b)}



Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of ENv:
(b) = {n : [b]" = true}

This can be extended to a binary relation (i.e. a program):
[6] = {(n.n) = ne(b)}

Intuitively, b corresponds to the program

if b then skip else L fi



Conditional, better attempt

[if bthen P else Q fi] = [b; P]U [-b; Q]



While

while b do P od

@ Do 0 or more executions of P while b holds

@ Terminate when b does not hold



While

while b do P od

@ Do 0 or more executions of (b; P)

@ Terminate with an execution of —=b



While

while b do P od

@ Do 0 or more executions of (b; P)
@ Terminate with an execution of —b

How to do “0 or more” executions of (b; P)?



Transitive closure

Given a binary relation R C E x E, the transitive closure of R, R*
is defined to be the limit of the sequence

ROUR'UR?...

where
e R® = A, the diagonal relation
e RM1 =R"R

NB
@ R* is the smallest transitive relation which contains R

@ Related to the Kleene star operation seen in languages: ¥*




Transitive closure

Given a binary relation R C E x E, the transitive closure of R, R*
is defined to be the limit of the sequence

ROUR'UR?...

where
e R® = A, the diagonal relation
e RM1 =R"R

NB
@ R* is the smallest transitive relation which contains R

@ Related to the Kleene star operation seen in languages: ¥*

Technically, R* is the least-fixed point of f(X) = AUX;R



While

[while b do P od] = [b; P]*; [-b]

@ Do 0 or more executions of (b; P)

@ Conclude with an execution of —=b



Validity

A Hoare triple is valid, written |= {¢} P {¢} if

[PI({e2) < ().

That is, the relational image under [P] of the set of states where
 holds is contained in the set of states where v holds.



Validity




Validity




Validity




Validity




Validity

[P]




Soundness of Hoare Logic

Hoare Logic is sound with respect to the semantics given. That is,

Theorem

If={e} P{¢} then = {p} P {3}

J




Summary

@ Set theory revisited
@ Soundness of Hoare Logic

@ Completeness of Hoare Logic
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Some results on relational images
Lemma
For any binary relations R,S C X x Y and subsets A, B C X:
@ IfAC B then R(A) C R(B)
@ R(A)US(A) = (RUS)(A)
@ R(S(A)) = (5 R)(A)




Some results on relational images
Lemma
For any binary relations R,S C X x Y and subsets A, B C X:
@ IfAC B then R(A) C R(B)
@ R(A)US(A) = (RUS)(A)
@ R(S(A)) = (5 R)(A)

Proof (a):
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Some results on relational images
Lemma
For any binary relations R,S C X x Y and subsets A, B C X:
@ IfAC B then R(A) C R(B)
@ R(A)US(A) = (RUS)(A)
@ R(S(A)) = (5 R)(A)

Proof (a):

y € R(A) & dx € Asuch that (x,y) € R

= dx € B such that (x,y) € R
& yeR(B)
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Some results on relational images
Lemma
For any binary relations R,S C X x Y and subsets A, B C X:
@ IfAC B then R(A) C R(B)
@ R(A)US(A) = (RUS)(A)
@ R(S(A)) = (5 R)(A)

Proof (b):
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Some results on relational images
Lemma
For any binary relations R,S C X x Y and subsets A, B C X:
@ IfAC B then R(A) C R(B)
@ R(A)US(A) = (RUS)(A)
@ R(S(A)) = (S:R)(A)

Proof (b):

y € R(A)US(A) y € R(A) or y € S(A)

=

& dxeAst (x,y)e Rordxe Ast. (x,y)€S
& dxeAst (x,y)eRor(x,y)€S

& dxeAst (x,y)e(RUS)

N (

y € (RU S)(A)
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Some results on relational images
Lemma
For any binary relations R,S C X x Y and subsets A, B C X:
@ IfAC B then R(A) C R(B)
@ R(A)US(A) = (RUS)(A)
@ R(S(A)) = (5 R)(A)

Proof (c):
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Some results on relational images
Lemma
For any binary relations R,S C X x Y and subsets A, B C X:
@ IfAC B then R(A) C R(B)
@ R(A)US(A) = (RUS)(A)
@ R(S(A)) = (S:R)(A)

Proof (c):

z € R(S(A)) Jdy € S(A) s.t. (v,z) €R
Ix e A yeS(A) st (x,y)e Sand (y,z) R
dx € Ast. (x,z) € (S;R)

z € (S: R)(A)

to 0
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Some results on relational images

Corollary
If R(A) C A then R*(A) C A
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Some results on relational images

Corollary
If R(A) C A then R*(A) C A

Proof:
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Some results on relational images

Corollary
If R(A) C A then R*(A) C A

Proof:

R(A)C A = R™(A)=R(R(A)) C R'(A)
= RTHA)CR(A)CA

So R*(A) = (G R’) (A)
i=0

= UR®

0
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Summary

@ Set theory revisited
@ Soundness of Hoare Logic

@ Completeness of Hoare Logic
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Soundness of Hoare Logic

Theorem

It {p} P{} then |= {¢} P {4}
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Soundness of Hoare Logic

Theorem

It {p} P{} then |= {¢} P {4}

Proof:
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Soundness of Hoare Logic

Theorem

It {p} P{} then |= {¢} P {4}

Proof:
By induction on the structure of the proof.
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Base case: Assignment rule

(ass)

{wle/x]} x = e{p}
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Base case: Assignment rule

(ass)

{ole/x]} x = e{p}
Need to show {p[e/x]} x := e {p} is always valid. That is,

[x := el({¢le/x)) < ().
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Base case: Assignment rule

(ass)

{ole/x]} x = e{p}
Need to show {p[e/x]} x := e {p} is always valid. That is,
[x == el({ple/x])) < (#)-

Observation: [ple/x]]" = I[gp]]”/ where 7' = n[x — [e]"]
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Base case: Assignment rule

(ass)

{ple/xI} x = e{p}
Need to show {¢[e/x]} x := e {¢} is always valid. That is,
[ == el({ple/x])) € ().
Observation: [io[e/x]]" = [¢]” where 1 = n[x — [e]']

So if n € (p[e/x]) then ' € ()
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Base case: Assignment rule

(ass)

{ple/xI} x = e{p}
Need to show {¢[e/x]} x := e {¢} is always valid. That is,
[ == el({ple/x])) € ().
Observation: [io[e/x]]" = [¢]” where 1 = n[x — [e]']

So if n € (p[e/x]) then ' € ()

Recall: (n,7") € [x := €] if and only if " = n[x — [e]"],
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Base case: Assignment rule

(ass)

{ple/xI} x = e{¢}
Need to show {¢[e/x]} x := e {¢} is always valid. That is,
[x == el ((¢le/x])) € ().
Observation: [io[e/x]]" = [¢]” where 1 = n[x — [e]']

So if n € (p[e/x]) then ' € ()

Recall: (n,7") € [x := €] if and only if " = n[x — [e]"],

So [x := e](n) € () for all n € (ple/x])
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Base case: Assignment rule

(ass)

{ple/x]} x = e{e}
Need to show {¢[e/x]} x := e {¢} is always valid. That is,
[x == el({ple/x]) € ().
Observation: [g[e/x]]” = [¢]" where i’ = n[x > [e]”]
So if 1 € (¢[e/x]) then i’ € (p)
Recall: (n,7") € [x := €] if and only if " = 5[x — [e]"],
So [x := e](n) € {p) for all n € (p[e/x])
So [x = e]({¢le/x])) < ()
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Inductive case 1: Sequence rule

{e} P{v}  {¥}Q{p} (seq)
{0} P; Q{p}
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Inductive case 1: Sequence rule
{e} P{v}  {v}Q{p}
{v} P; Q{p} (sea)

Assume {¢} P {1} and {¢} Q{p} are valid. Need to show that
{¢} P; Q{p} is valid.
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Inductive case 1: Sequence rule

{e} P{v}  {¥}Q{p} (seq)
{0} P; Q{p}

Assume {o} P {¢} and {4} Q{p} are valid. Need to show that
{o} P; Q{p} is valid.

Recall: [P; Q] = [P]; [Q]




122

Inductive case 1: Sequence rule

{e} P{v}  {¥}Q{p} (seq)
{0} P; Q{p}

Assume {o} P {¢} and {4} Q{p} are valid. Need to show that
{o} P; Q{p} is valid.

Recall: [P; Q] = [P]; [Q]
So: [P; QI(()) = [QI(IPI((%))) (see Lemma 1(c))
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Inductive case 1: Sequence rule

{et P{v}  {¥}Q{p} (seq)
{0} P; Q{p}

Assume {o} P {¢} and {4} Q{p} are valid. Need to show that
{o} P; Q{p} is valid.

Recall: [P; Q] = [P]; [Q]
So: [P; QI((¢)) = [QRI(IPI({#))) (see Lemma 1(c))
By IH: [PI({¢)) € (¥) and [Q]({¥)) < (p)
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Inductive case 1: Sequence rule

{et P{v}  {¥}Q{p} (seq)
{0} P; Q{p}

Assume {o} P {¢} and {4} Q{p} are valid. Need to show that
{o} P; Q{p} is valid.

Recall: [P; Q] = [P]; [Q]

So: [P QI((¢)) = [QI(IPI((#))) (see Lemma 1(c))
By IH: [P]((¢)) € () and [QI((¢)) < (p)

So: [RI(IPI((¥)) € [QI((¥)) < (p) (see Lemma 1(a))
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Two more useful results
Lemma

For R C ENvV x ENV, predicates ¢ and ¥, and X C ENV:
Q@ [I(X) =(p)NX
@ R({eA9)) = (Tel: R)(()))
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Two more useful results
Lemma

For R C ENv X ENV, predicates ¢ and 1, and X C ENV:
@ [pl(X) = (p) N X

@ R((p A ) = (Iel: R)(()))

Proof (a):
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Two more useful results
Lemma

For R C ENv X ENV, predicates ¢ and 1, and X C ENV:
@ [pl(X) = (p) N X

@ R({p A) = (Il R)((¥)))

Proof (a):

nelel(X) & IneXst (n,7)€l¢]

& IneXst.n=n"andne (p)
s 0 eXn(p)
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Two more useful results
Lemma

For R C ENvV x ENV, predicates ¢ and ¥, and X C ENV:
Q@ [I(X) =(p)NX
@ R({eA9)) = (Tel: R)(()))

Proof (b):
(end) = ()N () =[e]((¢))

So R({p A)) = R([LI(())
= ([¢]; R)((¥)) (see Lemma 1(b))
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Inductive case 2: Conditional rule

{onegtP{y}  {pA-g}Q{y}
{p}if g then P else Q fi{¢}

(if)
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Inductive case 2: Conditional rule

{onegtP{y}  {pA-g}Q{y}
{p}if g then P else Q fi{¢}

Assume {p A g} P{¢} and {p A —g} Q{¢} are valid.
show that {p}if g then P else Q fi{¢} is valid.

(if)

Need to
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Inductive case 2: Conditional rule

{onegtP{y}  {pA-g}Q{y}
{¢}if g then P else Q fi{¢}

Assume {p A g} P{¢} and {p A —g} Q{¢} are valid.
show that {p}if g then P else Q fi{¢} is valid.

(if)

Recall: [if g then P else Q fi] = [g; P] U [g; Q]

Need to
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Inductive case 2: Conditional rule

{onegtP{y}  {pA-g}Q{y}
{¢}if g then P else Q fi{¢}

Assume {p A g} P{¢} and {p A —g} Q{¢} are valid.
show that {p}if g then P else Q fi{¢} is valid.

(if)

Recall: [if g then P else Q fi] = [g; P] U [g; Q]

[if g then P else Q fi]({y))

Need to
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Inductive case 2: Conditional rule
{engtP{v}  {on—g}Q{y}
{¢}if g then P else Q fi{¢}

Assume {p A g} P{¢} and {p A =g} Q{¢} are valid. Need to
show that {p}if g then P else Q fi{¢} is valid.

(if)

Recall: [if g then P else Q fi] = [g; P] U [g; Q]

[if g then P else Q fi]({y))
= [&: PI({¢)) U[-5: QI((¢))  (see Lemma 1(b))
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Inductive case 2: Conditional rule
{engtP{v}  {on—g}Q{y}
{¢}if g then P else Q fi{¢}

Assume {p A g} P{¢} and {p A =g} Q{¢} are valid. Need to
show that {p}if g then P else Q fi{¢} is valid.

(if)

Recall: [if g then P else Q fi] = [g; P] U [g; Q]

[if g then P else Q fi]({y))
= [&: PI({¢)) U[-5: QI((¢))  (see Lemma 1(b))
= [PI((g A p)) UIQI({~g A ¥)) (see Lemma 2(b))
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Inductive case 2: Conditional rule
{engtP{v}  {on—g}Q{y}
{¢}if g then P else Q fi{¢}

Assume {p A g} P{¢} and {p A =g} Q{¢} are valid. Need to
show that {p}if g then P else Q fi{¢} is valid.

(if)

Recall: [if g then P else Q fi] = [g; P] U [g; Q]

[if g then P else Q fi]({y))
= [&: PI({¥)) U[~g: QI({#)) (see Lemma 1(b))
= [PI((g A ) ULRI((—g A w)) (see Lemma 2(b))
C (V) (by IH)

)
)
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Inductive case 3: While rule

{v A g} P{p}
{¢} while g do P od {p A =g}

(loop)
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Assume

Inductive case 3: While rule

{ong} Py}
{} while g do P od {p A =g} (loop)
{ongtP{p} is valid. Need to

{¢} while g do P od {¢ A —g}is valid.

show

that
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Inductive case 3: While rule

{eng}P{y}

{¢} while g do P od {p A =g}

Assume {pAg}P{p} is valid.
{¢} while g do P od {¢ A —g}is valid.

Recall: [while g do P od] = [g; P]"; [¢]

Need

(loop)

to

show

that
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Inductive case 3: While rule

Ng}P
{pnetPie} (loop)
{¢} while g do P od {p A =g}
Assume {pAg}P{p} is valid. Need to show that

{¢} while g do P od {¢ A —g}is valid.
Recall: [while g do P od] = [g; P]"; [¢]

[s: PIK¥)) = [PI({g A ) (see Lemma 2(b))



140

Inductive case 3: While rule

Ng}P
{pnetPie} (loop)
{¢} while g do P od {p A =g}
Assume {pAg}P{p} is valid. Need to show that

{¢} while g do P od {¢ A —g}is valid.
Recall: [while g do P od] = [g; P]"; [¢]

[s: PIK¥)) = [PI({g A ) (see Lemma 2(b))
C (») (1H)
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Inductive case 3: While rule

{¢} whil{e(pg/\di}PPo{d@{}gp A-g} (loop)
Assume {pAg}P{p} is valid. Need to show that
{¢} while g do P od {¢ A —g}is valid.
Recall: [while g do P od] = [g; P]"; [¢]
[e: PI({e)) = [PI({g A ) (see Lemma 2(b))
< () (IH)

So [g;: PT*({¢)) C (¢) (see Corollary)
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Inductive case 3: While rule

(o) whil{e(pg/\di}PPo{d@{}gp ngy UooP)

Assume {pAg}P{p} is valid. Need to show that

{¢} while g do P od {¢ A —glis valid.
Recall: [while g do P od] = [g; P]*; [-¢]

[g: PI((e)) = [PI({g A ) (see Lemma 2(b))

() (1H)

So [g: PI"({»)) < () (see Corollary)

So [g: PI": [-&l((v)) =[-gl(lg: PI"({¢))) (see Lemma 1(c))
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Inductive case 3: While rule

Ng}P
{pnetPie} (loop)
{¢} while g do P od {p A =g}
Assume {pAg}P{p} is valid. Need to show that

{¢} while g do P od {¢ A —g}is valid.
Recall: [while g do P od] = [g; P]"; [¢]
[e: PI({e)) = [PI({g A ) (see Lemma 2(b)
(#) (IH

)
)
So [g: PT"({¢)) < (¢) (see Corollary)
)
)

N

So [g: PI": [-81((#)) = [-gl(l&: PI"((#))) (see Lemma 1(c

)
< [-el(() (see Lemma 1(a)
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Inductive case 3: While rule

Ng}P
{pnetPie} (loop)
{¢} while g do P od {p A =g}
Assume {pAg}P{p} is valid. Need to show that

{¢} while g do P od {¢ A —glis valid.

Recall: [while g do P od] = [g; P]*; [-¢]
[g: PI((e)) = [PI({g A ) (see Lemma 2(b))
() (1H)
So [g: PI"({»)) < () (see Corollary)
So [g: PI": [-&l((v)) =[-gl(lg: PI"({¢))) (see Lemma 1(c))
)
)

)
C [&l(()) (see Lemma 1(a)
= (g A\ o) (see Lemma 2(a)
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Inductive case 4: Consequence rule

o =  A{ptP{Y} Y-
{¢'} P{y'}

(cons)
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Inductive case 4: Consequence rule
¢ = A{etP{Y} Py
{'} P{Y'}
Assume {p} P{¢} is valid and ¢’ — ¢ and ¢ — 1/'. Need to show
that {¢'} P {¢'} is valid.

(cons)
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Inductive case 4: Consequence rule
¢ = A{etP{Y} Py
{'} P{Y'}
Assume {p} P{¢} is valid and ¢’ — ¢ and ¢ — 1/'. Need to show
that {¢'} P {¢'} is valid.

Observe: If ¢’ — ¢ then (¢') C (p)

(cons)
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Inductive case 4: Consequence rule
¢ = A{etP{Y} Py
{'} P{Y'}
Assume {p} P{¢} is valid and ¢’ — ¢ and ¢ — 1/'. Need to show
that {¢'} P {¢'} is valid.

Observe: If ¢’ — ¢ then (¢') C (p)

(cons)

[PI(¢") < [PI((p)) (see Lemma 1(a))
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Inductive case 4: Consequence rule
¢ = A{etP{Y} Py
{'} P{Y'}
Assume {p} P{¢} is valid and ¢’ — ¢ and ¢ — 1/'. Need to show
that {¢'} P {¢'} is valid.

Observe: If ¢’ — ¢ then (¢') C (p)

(cons)

[PI(¢") < [PI((p)) (see Lemma 1(a))
< ¥ (IH)
< (W)
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Soundness of Hoare Logic

Theorem

If={p} P{} then = {p} P{y}
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Summary

@ Set theory revisited
@ Soundness of Hoare Logic

@ Completeness of Hoare Logic
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Incompleteness

Theorem (Godel’s Incompleteness Theorem)

There is no proof system that can prove every valid first-order
sentence about arithmetic over the natural numbers.
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Incompleteness

Theorem (Godel’s Incompleteness Theorem)

There is no proof system that can prove every valid first-order
sentence about arithmetic over the natural numbers.

= There are true statements that do not have a proof.
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Incompleteness

Theorem (Godel’s Incompleteness Theorem)

There is no proof system that can prove every valid first-order
sentence about arithmetic over the natural numbers.

= There are true statements that do not have a proof.

= Because of (cons) there are valid triples that result from valid,
but unprovable, consequences.
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Incompleteness

Theorem (Godel’s Incompleteness Theorem)

There is no proof system that can prove every valid first-order
sentence about arithmetic over the natural numbers.

= There are true statements that do not have a proof.

= Because of (cons) there are valid triples that result from valid,
but unprovable, consequences.

= Hoare Logic is not complete.



Relative completeness of Hoare Logic

Theorem (Relative completeness of Hoare Logic)

With an oracle that decides the validity of predicates,

if = {p} P{} then F{p}P{¢}.
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Need to know for this course

@ Write programs in L.
@ Give proofs using the Hoare logic rules (full and outline)
o Definition of -]

@ Definition of composition and transitive closure



