COMP2111 Week 8/9

Term 1, 2024
Hoare Logic

Sir Tony Hoare

Pioneer in formal verification

Invented: Quicksort,

the null reference (called it his “billion dollar mistake™)
CSP (formal specification language), and

Hoare Logic

Summary

@ L: A simple imperative programming language
@ Hoare triples (SYNTAX)
@ Hoare logic (PROOF)

@ Semantics for Hoare logic

Summary

@ L: A simple imperative programming language
@ Hoare triples (SYNTAX)
@ Hoare logic (PROOF)

@ Semantics for Hoare logic

Imperative Programming

impero

Definition

Imperative programming is where programs are described as a
series of statements or commands to manipulate mutable state or
cause externally observable effects.

States may take the form of a mapping from variable names to
their values, or even a model of a CPU state with a memory model
(for example, in an assembly language).

L: A simple imperative programming language

Consider the vocabulary of basic arithmetic:
@ Constant symbols: 0,1,2,...
@ Function symbols: +, %,...
@ Predicate symbols: <, <,>/|,...

L: A simple imperative programming language

Consider the vocabulary of basic arithmetic:
@ Constant symbols: 0,1,2,...
@ Function symbols: +, %,...
@ Predicate symbols: <, <, >/|,...

@ An (arithmetic) expression is a term over this vocabulary.

L: A simple imperative programming language

Consider the vocabulary of basic arithmetic:
@ Constant symbols: 0,1,2,...
@ Function symbols: +, %,...
@ Predicate symbols: <, <, >/|,...

@ An (arithmetic) expression is a term over this vocabulary.

@ A boolean expression is a predicate formula over this
vocabulary.

The language L

The language L is a simple imperative programming language
made up of four statements:
Assignment: x :=e
where x is a variable and e is an arithmetic
expression.

The language L

The language L is a simple imperative programming language
made up of four statements:
Assignment: x:=e
where x is a variable and e is an arithmetic
expression.

Sequencing: P;Q

The language L

The language L is a simple imperative programming language
made up of four statements:
Assignment: x:=e
where x is a variable and e is an arithmetic
expression.
Sequencing: P;Q
Conditional: if g then P else Q fi
where g is a boolean expression.

The language L

The language L is a simple imperative programming language
made up of four statements:
Assignment: x:=e
where x is a variable and e is an arithmetic
expression.
Sequencing: P;Q
Conditional: if g then P else Q fi
where g is a boolean expression.
While: while g do P od

Example

Factorial in £

I :=0;

m:=1;

while i < N do
=14+ 1;
m:=mxi

od

Summary

@ L: A simple imperative programming language
@ Hoare triples (SYNTAX)
@ Hoare logic (PROOF)

@ Semantics for Hoare logic

Summary

@ L: A simple imperative programming language
@ Hoare triples (SYNTAX)
@ Hoare logic (PROOF)

@ Semantics for Hoare logic

Hoare Logic

We are going to define what's called a Hoare Logic for L to allow
us to prove properties of our program.
We write a Hoare triple judgement as:

{v} P {0}

Where ¢ and v are logical formulae about states, called assertions,
and P is a program. This triple states that if the program P
terminates and it successfully evaluates from a starting state
satisfying the precondition ¢, then the result state will satisfy the
postcondition 1.

Example

Hoare triple: Examples

{(x=0)}x:=1{(x=1)}

Example

Hoare triple: Examples

{(x=0)}x:=1{(x=1)}
{(x =1499)} x := x+ 1 {(x = 500)}

Hoare triple: Examples

Example
{(x=0}x:=1{(x=1)}
{(x =1499)} x := x+ 1 {(x = 500)}

{(x>0)}y=0-x{(y <0)A(x#y)}

Example

Hoare triple: Factorial Examples

{N >0}
i:=0;
m:=1,
while i < N do
Ii=i+1;
m:=msxi
od

{m= NI}

Summary

@ L: A simple imperative programming language
@ Hoare triples (SYNTAX)
@ Hoare logic (PROOF)

@ Semantics for Hoare logic

Motivation

Question

We know what we want informally; how do we establish when a
triple is valid?

Motivation

Question

We know what we want informally; how do we establish when a
triple is valid?

@ Develop a semantics, OR

Hoare logic consists of one axiom and four inference rules for
deriving Hoare triples.

Motivation

Question

We know what we want informally; how do we establish when a
triple is valid?

@ Develop a semantics, OR

@ Derive the triple in a syntactic manner (i.e. Hoare proof)

Hoare logic consists of one axiom and four inference rules for
deriving Hoare triples.

Assignment

(assign)
{wle/x]} x = e{e}

Intuition:

If x has property ¢ after executing the assignment; then e must

have property ¢ before executing the assignment

Example

Assignment: Example

{(y =01 x:=y{(x=0)}

Example

Assignment: Example

{(y =01 x:=y{(x=0)}
{ px=yilx=y)}

Example

Assignment: Example

{y=0)}x:=y{(x=0)}
{y=y)ix=y{x=y)}

Assignment: Example

Example
{(y =0)}x:=y{(x=0)}
{(y=y)ix=y{lx=y)}
{ Ix=1{(x<2)

Example

Assignment: Example

{(r=0}x=y{(x=0)}
{(r=y)x=y{lx=y)}
{1<2)}x:=1{(x<2)}
{(r=3)x=y{(x>2)}

Assignment: Example

Example
{(r=0)}x:=y{(x=0)}
{(r=y)x=y{lx=y)}
{1<2)tx=1{(x<2)}

{(y =3)}x:=y{(x>2)} Problem!

Sequence

{et P{v} {v}Q{p}
{0} P; Q{p}

Intuition:
If the postcondition of P matches the precondition of @ we can
sequentially combine the two program fragments

Example

{

Sequence: Example

Example

{

Sequence: Example

bx = 0{(x=0)}

{(x=0)}y :=0{(x=y)}

{ tx =0y =0{(x=y)}

(seq)

Sequence: Example

Example

{(0=0)}x:=0{(x=0)} {(x=0)}y:=0{(x=y)}

{(0=0)}x:=0;y :=0{(x = y)}

(seq)

Conditional

{pngtP{v} {pn-g}Q{v}
{¢}if g then P else Q fi{¢}

(if)

Intuition:
@ When a conditional is executed, either P or Q will be
executed.
@ If ¢ is a postcondition of the conditional, then it must be a
postcondition of both branches

@ Likewise, if ¢ is a precondition of the conditional, then it must
be a precondition of both branches

@ Which branch gets executed depends on g, so we can assume
g to be a precondition of P and —g to be a precondition of Q.

While

{voNgtPiv}
{¢} while g do P od{p A =g}

(loop)

Intuition:

@ is a loop invariant. |t must be both a pre- and
postcondition of P, so that sequences of Ps can be run
together.

@ If the while loop terminates, g cannot hold.

Consequence

There is one more rule, called the rule of consequence, that we
need to insert ordinary logical reasoning into our Hoare logic
proofs:

= A{etP{Y} Y
{e'} P{'}

(cons)

Consequence

There is one more rule, called the rule of consequence, that we
need to insert ordinary logical reasoning into our Hoare logic
proofs:

o = A{ptP{Y} Y=
{¢'} P{Y'}

(cons)

Intuition:

@ Adding assertions to the precondition makes it more likely the
postcondition will be reached

@ Removing assertions from the postcondition makes it more
likely the postcondition will be reached

@ If you can reach the postcondition initially, then you can reach
it in the more likely scenario

Example

Back to Assignment Example

{(y =3)}x:=y{(x>2)} Problem!

Example

Back to Assignment Example

{(y =3)}x:=y{(x>2)} Problem!

{(y > 2)px = y{(x > 2)}(assign)

Example

Back to Assignment Example

{(y =3)}x:=y{(x>2)} Problem!

{(y = 3)}x := y{(x > 2)}(assign, cons)
{(y > 2)px = y{(x > 2)}(assign)

Factorial Example

Let's verify the Factorial program using our Hoare rules:

{N >0}
i:=0;
m:=1;
while i # N do
i=i+1;
m:=mxi
od
{m= N}

{ongt P{y} {pn—g} Q{¥}

{¢} if g then P else Q fi {¢}

{olx:=el} x:=e {¢}

{pAg} P{p}

{¢} while g do P od {¢ A —g}

{e} P{a} {a} Q{¢}

{v} P Q {¥}

=9 {o}P{y} =9
{¢'} P {4}

Factorial Example

Let's verify the Factorial program using our Hoare rules:

{N >0}
i:=0;
m:=1;
while i # N do
i=i+1;
m:=mxi

od{m=ilAN>0Ai=N}
{m= N}

{ongt P{y} {pn—g} Q{¥}

{¢} if g then P else Q fi {¢}

{olx:=el} x:=e {¢}

{pAg} P{p}

{¢} while g do P od {¢ A —g}

{e} P{a} {a} Q{¢}

{v} P Q {¥}
=9 {o}P{y} =9

{¢'} P{v"}

Factorial Example

{N >0}
i:=0;
m:=1;

{m=i'AN >0}

while i # N do

i=i+1;
m:=mxi

od{m=ilAN>0Ai=N}
{m= N}

Let's verify the Factorial program using our Hoare rules:

{ongt P{y} {pn—g} Q{¥}

{¢} if g then P else Q fi {¢}

{olx:=el} x:=e {¢}

{pAg} P{p}

{¢} while g do P od {¢ A —g}

{e} P{a} {a} Q{¢}

{v} P Q {¥}
=9 {o}P{y} =9

{¢'} P{v"}

Factorial Example

Let's verify the Factorial program using our Hoare rules:

{N >0}
i:=0;
m:=1;

{m=i'AN >0}

while i # N do

i=i+1;
m:=mxi

{m=i'AN>0}
od{m=ilAN>0Ai=N}
{m= N}

{ongt P{y} {pn—g} Q{¥}

{¢} if g then P else Q fi {¢}

{olx:=el} x:=e {¢}

{pAg} P{p}

{¢} while g do P od {¢ A —g}

{e} P{a} {a} Q{¢}

{v} P Q {¥}
=9 {o}P{y} =9

{¢'} P{v"}

Factorial Example

Let's verify the Factorial program using our Hoare rules:

{N =0}

m:=1;
{m=i'AN >0}
while i # N do{m=i'AN>0AIiN}

i=i+1;

m:=mx.i
{m=i'AN>0}
od{m=ilAN>0Ai=N}
{m= N}

{ongt P{y} {pn—g} Q{¥}

{¢} if g then P else Q fi {¢}

{olx:=el} x:=e {¢}

{pAg} P{p}

{¢} while g do P od {¢ A —g}

{e} P{a} {a} Q{¢}

{v} P Q {¥}
=9 {o}P{y} =9

{¢'} P{v"}

Factorial Example

Let's verify the Factorial program using our Hoare rules:

{N =0}

m:=1;
{m=i'AN >0}
while i # N do{m=i'AN>0AIiN}

i=i+1;
{mxi=ilAN >0}
m:=mxi

{m=i'AN>0}
od{m=ilAN>0Ai=N}
{m= N}

{ongt P{y} {pn—g} Q{¥}

{¢} if g then P else Q fi {¢}

{olx:=el} x:=e {¢}

{pAg} P{p}

{¢} while g do P od {¢ A —g}

{e} P{a} {a} Q{¢}

{v} P Q {¥}
=9 {o}P{y} =9

{¢'} P{v"}

Factorial Example

Let's verify the Factorial program using our Hoare rules:

{N =0}

m:=1;
{m=i'AN >0}
while i # N do{m=i'AN>0AIiN}
{mx(+1)=(@(+1)AN>0}

i=i+1;
{mxi=ilAN >0}
m:=mxi

{m=i'AN>0}
od{m=ilAN>0Ai=N}
{m= N}

{ongt P{y} {pn—g} Q{¥}

{¢} if g then P else Q fi {¢}

{olx:=el} x:=e {¢}

{pAg} P{p}

{¢} while g do P od {¢ A —g}

{e} P{a} {a} Q{¢}

{v} P Q {¥}
=9 {o}P{y} =9

{¢'} P{v"}

Factorial Example

Let's verify the Factorial program using our Hoare rules:

{N =0}

m:=1;

{m=i'AN >0}

while i £ N do{m =il AN >0AiN}
{mx(i+1)=(i+1)IAN>0}

i=i+1;
{mxi=ilAN >0}
m:=mxi

{m=i'AN>0}

od{m=ilAN>0Ai=N}

{m= N}

note: (i + 1)l =ilx (i+1)

{ongt P{y} {pn—g} Q{¥}

{¢} if g then P else Q fi {¢}

{olx:=el} x:=e {¢}

{pAg} P{p}

{¢} while g do P od {¢ A —g}

{e} P{a} {a} Q{¢}

{v} P Q {¥}
=9 {o}P{y} =9
{¢'} P {4}

Factorial Example

Let's verify the Factorial program using our Hoare rules:

{N >0}
i:=0;

m:=1{m=i'AN >0}

{m=i'AN >0}

while i £ N do{m =il AN >0AiN}
{mx(i+1)=(i+1)IAN>0}

i=i+1;
{mxi=ilAN >0}
m:=mxi

{m=i'AN>0}

od{m=ilAN>0Ai=N}

{m= N}

note: (i + 1)l =ilx (i+1)

{ongt P{y} {pn—g} Q{¥}

{¢} if g then P else Q fi {¢}

{olx:=el} x:=e {¢}

{pAg} P{p}

{¢} while g do P od {¢ A —g}

{e} P{a} {a} Q{¢}

{v} P Q {¥}
=9 {o}P{y} =9
{¢'} P {4}

Factorial Example

Let's verify the Factorial program using our Hoare rules:

{N >0}
i:=0;

{1=i"'AN>0tm:=1L{m=i' AN >0}

{m=i'AN >0}

while i £ N do{m =il AN >0AiN}
{mx(i+1)=(i+1)IAN>0}

i=i+1;
{mxi=ilAN >0}
m:=mxi

{m=i'AN>0}

od{m=ilAN>0Ai=N}

{m= N}

note: (i + 1)l =ilx (i+1)

{ongt P{y} {pn—g} Q{¥}

{¢} if g then P else Q fi {¢}

{olx:=el} x:=e {¢}

{pAg} P{p}

{¢} while g do P od {¢ A —g}

{e} P{a} {a} Q{¢}

{v} P Q {¥}
=9 {o}P{y} =9
{¢'} P {4}

Factorial Example

Let's verify the Factorial program using our Hoare rules:

{N =0}

i=0{1=i"AN >0}
{1=i"'AN>0tm:=1L{m=i' AN >0}

{m=i'AN >0}

while i £ N do{m =il AN >0AiN}
{mx(i+1)=(i+1)IAN>0}

i=i+1;
{mxi=ilAN >0}
m:=mxi

{m=i'AN>0}

od{m=ilAN>0Ai=N}

{m= N}

note: (i + 1)l =ilx (i+1)

{ongt P{y} {pn—g} Q{¥}

{¢} if g then P else Q fi {¢}

{olx:=el} x:=e {¢}

{pAg} P{p}

{¢} while g do P od {¢ A —g}

{e} P{a} {a} Q{¢}

{v} P Q {¥}
=9 {o}P{y} =9
{¢'} P {4}

Factorial Example

Let's verify the Factorial program using our Hoare rules:

{N >0}

{1=0IAN>0}i:=0{l=iAN>0}
{1=i"'AN>0tm:=1L{m=i' AN >0}

{m=i'AN >0}

while i £ N do{m =il AN >0AiN}
{mx(i+1)=(i+1)IAN>0}

i=i+1;
{mxi=ilAN >0}
m:=mxi

{m=i'AN>0}

od{m=ilAN>0Ai=N}

{m= N}

note: (i + 1)l =ilx (i+1)

{ongt P{y} {pn—g} Q{¥}

{¢} if g then P else Q fi {¢}

{olx:=el} x:=e {¢}

{pAg} P{p}

{¢} while g do P od {¢ A —g}

{e} P{a} {a} Q{¢}

{v} P Q {¥}
=9 {o}P{y} =9
{¢'} P {4}

Practice Exercise
Example

m:=1;
n:=1;
i=1;
while i < N do
t = m;

m = n;
n:=m-+t;
i=i+1
od

Practice Exercise
Example

m:=1;
n:=1;
i=1;
while i < N do
t = m;

m = n;
n:=m-+t;
I=i4+1
od

@ What does this £ program P compute?

@ What is a valid Hoare triple {¢}P{%} of this program?

@ Prove using the inference rules and consequence axiom that
this Hoare triple is valid.

Summary

@ L: A simple imperative programming language
@ Hoare triples (SYNTAX)
@ Hoare logic (PROOF)

@ Semantics for Hoare logic

Recall

If R and S are binary relations, then the relational composition
of Rand S, R; S is the relation:

R;S :={(a,c) : 3b such that (a,b) € R and (b,c) € S}

If RC Ax B is a relation, and X C A, then the image of X
under R, R(X) is the subset of B defined as:

R(X) :={b € B : Ja inX such that (a, b) € R}.

Informal semantics

Hoare logic gives a proof of {p} P{¢}, thatis: - {p} P{¢}
(axiomatic semantics)

How do we determine when {¢©} P {¢} is valid, that is:
= {e} P{y}?

Informal semantics

Hoare logic gives a proof of {p} P{¢}, thatis: - {p} P{¢}
(axiomatic semantics)

How do we determine when {¢©} P {¢} is valid, that is:
= {e} P{y}?

If © holds in a state of some computational model
then ¢ holds in the state reached after a successful execution of P.

Informal semantics: Programs

What is a program?

Informal semantics: Programs

What is a program?

A

function mapping system states to system states

Informal semantics: Programs

What is a program?

A partial function mapping system states to system states

Informal semantics: Programs

What is a program?

A relation between system states

Informal semantics: States

What is a state of a computational model?

Informal semantics: States
What is a state of a computational model?

Two approaches:
o Concrete: from a physical perspective

@ Abstract: from a mathematical perspective

Informal semantics: States

What is a state of a computational model?

Two approaches:
o Concrete: from a physical perspective

o States are memory configurations, register contents, etc.
o Store of variables and the values associated with them

@ Abstract: from a mathematical perspective

Informal semantics: States

What is a state of a computational model?

Two approaches:
o Concrete: from a physical perspective

o States are memory configurations, register contents, etc.
o Store of variables and the values associated with them

@ Abstract: from a mathematical perspective

o The pre-/postcondition predicates hold in a state
= States are logical interpretations (Model + Environment)

Informal semantics: States

What is a state of a computational model?

Two approaches:
o Concrete: from a physical perspective

o States are memory configurations, register contents, etc.
o Store of variables and the values associated with them
@ Abstract: from a mathematical perspective
o The pre-/postcondition predicates hold in a state
= States are logical interpretations (Model + Environment)

e There is only one model of interest: standard interpretations of
arithmetical symbols

Informal semantics: States

What is a state of a computational model?

Two approaches:
o Concrete: from a physical perspective

o States are memory configurations, register contents, etc.
o Store of variables and the values associated with them

@ Abstract: from a mathematical perspective

o The pre-/postcondition predicates hold in a state
= States are logical interpretations (Model + Environment)
e There is only one model of interest: standard interpretations of
arithmetical symbols
= States are fully determined by environments
= States are functions that map variables to values

Informal semantics: States

x<+0
y<+0
z+0

x <1
y+1

x<+<0
y<+1
z+ 2

x<+1
y+1

State space (ENV)

x <+ 0
y<+«1
z<+0

x <3
y <2

X 2
y 2

Informal semantics: States and Programs

Vs

State space (ENV)

x <3
y <2
/z<_1

x<+0
y<+0
z+0

x<+1
y+1
z<+ 2

x <1

x <+ 0
y<+«1
z<+0

/

X 2
y 2
z 2

.

N

Informal semantics:

States and Programs

Semantics for L

An environment or state is a function from variables to numeric
values. We denote by ENV the set of all environments.

NB

An environment, 1), assigns a numeric value [e]" to all expressions
e, and a boolean value [b]" to all boolean expressions b.

Semantics for L

An environment or state is a function from variables to numeric
values. We denote by ENV the set of all environments.

NB

An environment, 1), assigns a numeric value [e]" to all expressions
e, and a boolean value [b]" to all boolean expressions b.

Given a program P of L, we define [P] to be a binary relation on
ENV in the following manner...

(m,7') € [x == e]

Assignment

if, and only if 7' = n[x — [e]"]

Assignment: [z :=

2]

State space (ENV)

x <+ 0
<\yeo
z<+0
x<+1 x<+1
yel|—>|y+1
z+1 z4+ 2
x<+0
}z/:; ‘\x<—0

y<+1
z+0

x <+ 3 /

y<+2
z+1

X 2
y<+<2
z+ 2

Sequencing

[P: Q1 =PI 1]

where, on the RHS,

; is relational composition.

Conditional, first attempt

[if b then P else Q fi] = { %g]]]] i [[b]rth:e e

Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of ENv:

(b) = {n : [6]" = true}

This can be extended to a binary relation (i.e. a program):

(61 = {(n,n) - n e (b)}

Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of ENv:
(b) = {n : [b]" = true}

This can be extended to a binary relation (i.e. a program):
[6] = {(n.n) = ne(b)}

Intuitively, b corresponds to the program

if b then skip else L fi

Conditional, better attempt

[if bthen P else Q fi] = [b; P]U [-b; Q]

While

while b do P od

@ Do 0 or more executions of P while b holds

@ Terminate when b does not hold

While

while b do P od

@ Do 0 or more executions of (b; P)

@ Terminate with an execution of —=b

While

while b do P od

@ Do 0 or more executions of (b; P)
@ Terminate with an execution of —b

How to do “0 or more” executions of (b; P)?

Transitive closure

Given a binary relation R C E x E, the transitive closure of R, R*
is defined to be the limit of the sequence

ROUR'UR?...

where
e R® = A, the diagonal relation
e RM1 =R"R

NB
@ R* is the smallest transitive relation which contains R

@ Related to the Kleene star operation seen in languages: ¥*

Transitive closure

Given a binary relation R C E x E, the transitive closure of R, R*
is defined to be the limit of the sequence

ROUR'UR?...

where
e R® = A, the diagonal relation
e RM1 =R"R

NB
@ R* is the smallest transitive relation which contains R

@ Related to the Kleene star operation seen in languages: ¥*

Technically, R* is the least-fixed point of f(X) = AUX;R

While

[while b do P od] = [b; P]*; [-b]

@ Do 0 or more executions of (b; P)

@ Conclude with an execution of —=b

Validity

A Hoare triple is valid, written |= {¢} P {¢} if

[PI({e2) < ().

That is, the relational image under [P] of the set of states where
 holds is contained in the set of states where v holds.

Validity

Validity

Validity

Validity

Validity

[P]

Soundness of Hoare Logic

Hoare Logic is sound with respect to the semantics given. That is,

Theorem

If={e} P{¢} then = {p} P {3}

J

Summary

@ Set theory revisited
@ Soundness of Hoare Logic

@ Completeness of Hoare Logic

Summary

@ Set theory revisited
@ Soundness of Hoare Logic

@ Completeness of Hoare Logic

Some results on relational images
Lemma
For any binary relations R,S C X x Y and subsets A, B C X:
@ IfAC B then R(A) C R(B)
@ R(A)US(A) = (RUS)(A)
@ R(S(A)) = (5 R)(A)

Some results on relational images
Lemma
For any binary relations R,S C X x Y and subsets A, B C X:
@ IfAC B then R(A) C R(B)
@ R(A)US(A) = (RUS)(A)
@ R(S(A)) = (5 R)(A)

Proof (a):

100

Some results on relational images
Lemma
For any binary relations R,S C X x Y and subsets A, B C X:
@ IfAC B then R(A) C R(B)
@ R(A)US(A) = (RUS)(A)
@ R(S(A)) = (5 R)(A)

Proof (a):

y € R(A) & dx € Asuch that (x,y) € R

= dx € B such that (x,y) € R
& yeR(B)

101

Some results on relational images
Lemma
For any binary relations R,S C X x Y and subsets A, B C X:
@ IfAC B then R(A) C R(B)
@ R(A)US(A) = (RUS)(A)
@ R(S(A)) = (5 R)(A)

Proof (b):

102

Some results on relational images
Lemma
For any binary relations R,S C X x Y and subsets A, B C X:
@ IfAC B then R(A) C R(B)
@ R(A)US(A) = (RUS)(A)
@ R(S(A)) = (S:R)(A)

Proof (b):

y € R(A)US(A) y € R(A) or y € S(A)

=

& dxeAst (x,y)e Rordxe Ast. (x,y)€S
& dxeAst (x,y)eRor(x,y)€S

& dxeAst (x,y)e(RUS)

N (

y € (RU S)(A)

103

Some results on relational images
Lemma
For any binary relations R,S C X x Y and subsets A, B C X:
@ IfAC B then R(A) C R(B)
@ R(A)US(A) = (RUS)(A)
@ R(S(A)) = (5 R)(A)

Proof (c):

104

Some results on relational images
Lemma
For any binary relations R,S C X x Y and subsets A, B C X:
@ IfAC B then R(A) C R(B)
@ R(A)US(A) = (RUS)(A)
@ R(S(A)) = (S:R)(A)

Proof (c):

z € R(S(A)) Jdy € S(A) s.t. (v,z) €R
Ix e A yeS(A) st (x,y)e Sand (y,z) R
dx € Ast. (x,z) € (S;R)

z € (S: R)(A)

to 0

105

Some results on relational images

Corollary
If R(A) C A then R*(A) C A

106

Some results on relational images

Corollary
If R(A) C A then R*(A) C A

Proof:

107

Some results on relational images

Corollary
If R(A) C A then R*(A) C A

Proof:

R(A)C A = R™(A)=R(R(A)) C R'(A)
= RTHA)CR(A)CA

So R*(A) = (G R’) (A)
i=0

= UR®

0

108

Summary

@ Set theory revisited
@ Soundness of Hoare Logic

@ Completeness of Hoare Logic

109

Soundness of Hoare Logic

Theorem

It {p} P{} then |= {¢} P {4}

110

Soundness of Hoare Logic

Theorem

It {p} P{} then |= {¢} P {4}

Proof:

111

Soundness of Hoare Logic

Theorem

It {p} P{} then |= {¢} P {4}

Proof:
By induction on the structure of the proof.

112

Base case: Assignment rule

(ass)

{wle/x]} x = e{p}

113

Base case: Assignment rule

(ass)

{ole/x]} x = e{p}
Need to show {p[e/x]} x := e {p} is always valid. That is,

[x := el({¢le/x)) < ().

114

Base case: Assignment rule

(ass)

{ole/x]} x = e{p}
Need to show {p[e/x]} x := e {p} is always valid. That is,
[x == el({ple/x])) < (#)-

Observation: [ple/x]]" = I[gp]]”/ where 7' = n[x — [e]"]

115

Base case: Assignment rule

(ass)

{ple/xI} x = e{p}
Need to show {¢[e/x]} x := e {¢} is always valid. That is,
[== el({ple/x])) € ().
Observation: [io[e/x]]" = [¢]” where 1 = n[x — [e]']

So if n € (p[e/x]) then ' € ()

116

Base case: Assignment rule

(ass)

{ple/xI} x = e{p}
Need to show {¢[e/x]} x := e {¢} is always valid. That is,
[== el({ple/x])) € ().
Observation: [io[e/x]]" = [¢]” where 1 = n[x — [e]']

So if n € (p[e/x]) then ' € ()

Recall: (n,7") € [x := €] if and only if " = n[x — [e]"],

117

Base case: Assignment rule

(ass)

{ple/xI} x = e{¢}
Need to show {¢[e/x]} x := e {¢} is always valid. That is,
[x == el ((¢le/x])) € ().
Observation: [io[e/x]]" = [¢]” where 1 = n[x — [e]']

So if n € (p[e/x]) then ' € ()

Recall: (n,7") € [x := €] if and only if " = n[x — [e]"],

So [x := e](n) € () for all n € (ple/x])

118

Base case: Assignment rule

(ass)

{ple/x]} x = e{e}
Need to show {¢[e/x]} x := e {¢} is always valid. That is,
[x == el({ple/x]) € ().
Observation: [g[e/x]]” = [¢]" where i’ = n[x > [e]”]
So if 1 € (¢[e/x]) then i’ € (p)
Recall: (n,7") € [x := €] if and only if " = 5[x — [e]"],
So [x := e](n) € {p) for all n € (p[e/x])
So [x = e]({¢le/x])) < ()

119

Inductive case 1: Sequence rule

{e} P{v} {¥}Q{p} (seq)
{0} P; Q{p}

120

Inductive case 1: Sequence rule
{e} P{v} {v}Q{p}
{v} P; Q{p} (sea)

Assume {¢} P {1} and {¢} Q{p} are valid. Need to show that
{¢} P; Q{p} is valid.

121

Inductive case 1: Sequence rule

{e} P{v} {¥}Q{p} (seq)
{0} P; Q{p}

Assume {o} P {¢} and {4} Q{p} are valid. Need to show that
{o} P; Q{p} is valid.

Recall: [P; Q] = [P]; [Q]

122

Inductive case 1: Sequence rule

{e} P{v} {¥}Q{p} (seq)
{0} P; Q{p}

Assume {o} P {¢} and {4} Q{p} are valid. Need to show that
{o} P; Q{p} is valid.

Recall: [P; Q] = [P]; [Q]
So: [P; QI(()) = [QI(IPI((%))) (see Lemma 1(c))

123

Inductive case 1: Sequence rule

{et P{v} {¥}Q{p} (seq)
{0} P; Q{p}

Assume {o} P {¢} and {4} Q{p} are valid. Need to show that
{o} P; Q{p} is valid.

Recall: [P; Q] = [P]; [Q]
So: [P; QI((¢)) = [QRI(IPI({#))) (see Lemma 1(c))
By IH: [PI({¢)) € (¥) and [Q]({¥)) < (p)

124

Inductive case 1: Sequence rule

{et P{v} {¥}Q{p} (seq)
{0} P; Q{p}

Assume {o} P {¢} and {4} Q{p} are valid. Need to show that
{o} P; Q{p} is valid.

Recall: [P; Q] = [P]; [Q]

So: [P QI((¢)) = [QI(IPI((#))) (see Lemma 1(c))
By IH: [P]((¢)) € () and [QI((¢)) < (p)

So: [RI(IPI((¥)) € [QI((¥)) < (p) (see Lemma 1(a))

125

Two more useful results
Lemma

For R C ENvV x ENV, predicates ¢ and ¥, and X C ENV:
Q@ [I(X) =(p)NX
@ R({eA9)) = (Tel: R)(()))

126

Two more useful results
Lemma

For R C ENv X ENV, predicates ¢ and 1, and X C ENV:
@ [pl(X) = (p) N X

@ R((p A) = (Iel: R)(()))

Proof (a):

127

Two more useful results
Lemma

For R C ENv X ENV, predicates ¢ and 1, and X C ENV:
@ [pl(X) = (p) N X

@ R({p A) = (Il R)((¥)))

Proof (a):

nelel(X) & IneXst (n,7)€l¢]

& IneXst.n=n"andne (p)
s 0 eXn(p)

128

Two more useful results
Lemma

For R C ENvV x ENV, predicates ¢ and ¥, and X C ENV:
Q@ [I(X) =(p)NX
@ R({eA9)) = (Tel: R)(()))

Proof (b):
(end) = ()N () =[e]((¢))

So R({p A)) = R([LI(())
= ([¢]; R)((¥)) (see Lemma 1(b))

129

Inductive case 2: Conditional rule

{onegtP{y} {pA-g}Q{y}
{p}if g then P else Q fi{¢}

(if)

130

Inductive case 2: Conditional rule

{onegtP{y} {pA-g}Q{y}
{p}if g then P else Q fi{¢}

Assume {p A g} P{¢} and {p A —g} Q{¢} are valid.
show that {p}if g then P else Q fi{¢} is valid.

(if)

Need to

131

Inductive case 2: Conditional rule

{onegtP{y} {pA-g}Q{y}
{¢}if g then P else Q fi{¢}

Assume {p A g} P{¢} and {p A —g} Q{¢} are valid.
show that {p}if g then P else Q fi{¢} is valid.

(if)

Recall: [if g then P else Q fi] = [g; P] U [g; Q]

Need to

132

Inductive case 2: Conditional rule

{onegtP{y} {pA-g}Q{y}
{¢}if g then P else Q fi{¢}

Assume {p A g} P{¢} and {p A —g} Q{¢} are valid.
show that {p}if g then P else Q fi{¢} is valid.

(if)

Recall: [if g then P else Q fi] = [g; P] U [g; Q]

[if g then P else Q fi]({y))

Need to

133

Inductive case 2: Conditional rule
{engtP{v} {on—g}Q{y}
{¢}if g then P else Q fi{¢}

Assume {p A g} P{¢} and {p A =g} Q{¢} are valid. Need to
show that {p}if g then P else Q fi{¢} is valid.

(if)

Recall: [if g then P else Q fi] = [g; P] U [g; Q]

[if g then P else Q fi]({y))
= [&: PI({¢)) U[-5: QI((¢)) (see Lemma 1(b))

134

Inductive case 2: Conditional rule
{engtP{v} {on—g}Q{y}
{¢}if g then P else Q fi{¢}

Assume {p A g} P{¢} and {p A =g} Q{¢} are valid. Need to
show that {p}if g then P else Q fi{¢} is valid.

(if)

Recall: [if g then P else Q fi] = [g; P] U [g; Q]

[if g then P else Q fi]({y))
= [&: PI({¢)) U[-5: QI((¢)) (see Lemma 1(b))
= [PI((g A p)) UIQI({~g A ¥)) (see Lemma 2(b))

135

Inductive case 2: Conditional rule
{engtP{v} {on—g}Q{y}
{¢}if g then P else Q fi{¢}

Assume {p A g} P{¢} and {p A =g} Q{¢} are valid. Need to
show that {p}if g then P else Q fi{¢} is valid.

(if)

Recall: [if g then P else Q fi] = [g; P] U [g; Q]

[if g then P else Q fi]({y))
= [&: PI({¥)) U[~g: QI({#)) (see Lemma 1(b))
= [PI((g A) ULRI((—g A w)) (see Lemma 2(b))
C (V) (by IH)

)
)

136

Inductive case 3: While rule

{v A g} P{p}
{¢} while g do P od {p A =g}

(loop)

137

Assume

Inductive case 3: While rule

{ong} Py}
{} while g do P od {p A =g} (loop)
{ongtP{p} is valid. Need to

{¢} while g do P od {¢ A —g}is valid.

show

that

138

Inductive case 3: While rule

{eng}P{y}

{¢} while g do P od {p A =g}

Assume {pAg}P{p} is valid.
{¢} while g do P od {¢ A —g}is valid.

Recall: [while g do P od] = [g; P]"; [¢]

Need

(loop)

to

show

that

139

Inductive case 3: While rule

Ng}P
{pnetPie} (loop)
{¢} while g do P od {p A =g}
Assume {pAg}P{p} is valid. Need to show that

{¢} while g do P od {¢ A —g}is valid.
Recall: [while g do P od] = [g; P]"; [¢]

[s: PIK¥)) = [PI({g A) (see Lemma 2(b))

140

Inductive case 3: While rule

Ng}P
{pnetPie} (loop)
{¢} while g do P od {p A =g}
Assume {pAg}P{p} is valid. Need to show that

{¢} while g do P od {¢ A —g}is valid.
Recall: [while g do P od] = [g; P]"; [¢]

[s: PIK¥)) = [PI({g A) (see Lemma 2(b))
C (») (1H)

141

Inductive case 3: While rule

{¢} whil{e(pg/\di}PPo{d@{}gp A-g} (loop)
Assume {pAg}P{p} is valid. Need to show that
{¢} while g do P od {¢ A —g}is valid.
Recall: [while g do P od] = [g; P]"; [¢]
[e: PI({e)) = [PI({g A) (see Lemma 2(b))
< () (IH)

So [g;: PT*({¢)) C (¢) (see Corollary)

142

Inductive case 3: While rule

(o) whil{e(pg/\di}PPo{d@{}gp ngy UooP)

Assume {pAg}P{p} is valid. Need to show that

{¢} while g do P od {¢ A —glis valid.
Recall: [while g do P od] = [g; P]*; [-¢]

[g: PI((e)) = [PI({g A) (see Lemma 2(b))

() (1H)

So [g: PI"({»)) < () (see Corollary)

So [g: PI": [-&l((v)) =[-gl(lg: PI"({¢))) (see Lemma 1(c))

143

Inductive case 3: While rule

Ng}P
{pnetPie} (loop)
{¢} while g do P od {p A =g}
Assume {pAg}P{p} is valid. Need to show that

{¢} while g do P od {¢ A —g}is valid.
Recall: [while g do P od] = [g; P]"; [¢]
[e: PI({e)) = [PI({g A) (see Lemma 2(b)
(#) (IH

)
)
So [g: PT"({¢)) < (¢) (see Corollary)
)
)

N

So [g: PI": [-81((#)) = [-gl(l&: PI"((#))) (see Lemma 1(c

)
< [-el(() (see Lemma 1(a)

144

Inductive case 3: While rule

Ng}P
{pnetPie} (loop)
{¢} while g do P od {p A =g}
Assume {pAg}P{p} is valid. Need to show that

{¢} while g do P od {¢ A —glis valid.

Recall: [while g do P od] = [g; P]*; [-¢]
[g: PI((e)) = [PI({g A) (see Lemma 2(b))
() (1H)
So [g: PI"({»)) < () (see Corollary)
So [g: PI": [-&l((v)) =[-gl(lg: PI"({¢))) (see Lemma 1(c))
)
)

)
C [&l(()) (see Lemma 1(a)
= (g A\ o) (see Lemma 2(a)

145

Inductive case 4: Consequence rule

o = A{ptP{Y} Y-
{¢'} P{y'}

(cons)

146

Inductive case 4: Consequence rule
¢ = A{etP{Y} Py
{'} P{Y'}
Assume {p} P{¢} is valid and ¢’ — ¢ and ¢ — 1/'. Need to show
that {¢'} P {¢'} is valid.

(cons)

147

Inductive case 4: Consequence rule
¢ = A{etP{Y} Py
{'} P{Y'}
Assume {p} P{¢} is valid and ¢’ — ¢ and ¢ — 1/'. Need to show
that {¢'} P {¢'} is valid.

Observe: If ¢’ — ¢ then (¢') C (p)

(cons)

148

Inductive case 4: Consequence rule
¢ = A{etP{Y} Py
{'} P{Y'}
Assume {p} P{¢} is valid and ¢’ — ¢ and ¢ — 1/'. Need to show
that {¢'} P {¢'} is valid.

Observe: If ¢’ — ¢ then (¢') C (p)

(cons)

[PI(¢") < [PI((p)) (see Lemma 1(a))

149

Inductive case 4: Consequence rule
¢ = A{etP{Y} Py
{'} P{Y'}
Assume {p} P{¢} is valid and ¢’ — ¢ and ¢ — 1/'. Need to show
that {¢'} P {¢'} is valid.

Observe: If ¢’ — ¢ then (¢') C (p)

(cons)

[PI(¢") < [PI((p)) (see Lemma 1(a))
< ¥ (IH)
< (W)

150

Soundness of Hoare Logic

Theorem

If={p} P{} then = {p} P{y}

151

Summary

@ Set theory revisited
@ Soundness of Hoare Logic

@ Completeness of Hoare Logic

152

Incompleteness

Theorem (Godel’s Incompleteness Theorem)

There is no proof system that can prove every valid first-order
sentence about arithmetic over the natural numbers.

153

Incompleteness

Theorem (Godel’s Incompleteness Theorem)

There is no proof system that can prove every valid first-order
sentence about arithmetic over the natural numbers.

= There are true statements that do not have a proof.

154

Incompleteness

Theorem (Godel’s Incompleteness Theorem)

There is no proof system that can prove every valid first-order
sentence about arithmetic over the natural numbers.

= There are true statements that do not have a proof.

= Because of (cons) there are valid triples that result from valid,
but unprovable, consequences.

155

Incompleteness

Theorem (Godel’s Incompleteness Theorem)

There is no proof system that can prove every valid first-order
sentence about arithmetic over the natural numbers.

= There are true statements that do not have a proof.

= Because of (cons) there are valid triples that result from valid,
but unprovable, consequences.

= Hoare Logic is not complete.

Relative completeness of Hoare Logic

Theorem (Relative completeness of Hoare Logic)

With an oracle that decides the validity of predicates,

if = {p} P{} then F{p}P{¢}.

156

157

Need to know for this course

@ Write programs in L.
@ Give proofs using the Hoare logic rules (full and outline)
o Definition of -]

@ Definition of composition and transitive closure

