COMP2111 Week 8/9
Term 1, 2024
Hoare Logic

Sir Tony Hoare

- Pioneer in formal verification
- Invented: Quicksort,
- the null reference (called it his "billion dollar mistake")
- CSP (formal specification language), and
- Hoare Logic

Summary

- ullet \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Summary

- L: A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Imperative Programming

imperō

Definition

Imperative programming is where programs are described as a series of *statements* or commands to manipulate mutable *state* or cause externally observable *effects*.

States may take the form of a mapping from variable names to their values, or even a model of a CPU state with a memory model (for example, in an assembly language).

\mathcal{L} : A simple imperative programming language

Consider the vocabulary of basic arithmetic:

- Constant symbols: 0, 1, 2, ...
- Function symbols: +,*,...
- Predicate symbols: $<, \le, \ge, |, \dots|$

\mathcal{L} : A simple imperative programming language

Consider the vocabulary of basic arithmetic:

- Constant symbols: 0, 1, 2, ...
- Function symbols: +,*,...
- Predicate symbols: $<, \le, \ge, |, \dots|$
- An (arithmetic) expression is a term over this vocabulary.

\mathcal{L} : A simple imperative programming language

Consider the vocabulary of basic arithmetic:

- Constant symbols: 0,1,2,...
- Function symbols: +,*,...
- Predicate symbols: $<, \le, \ge, |, \dots|$
- An (arithmetic) expression is a term over this vocabulary.
- A boolean expression is a predicate formula over this vocabulary.

The language $\ensuremath{\mathcal{L}}$ is a simple imperative programming language made up of four statements:

Assignment: x := e

where x is a variable and e is an arithmetic expression.

The language $\ensuremath{\mathcal{L}}$ is a simple imperative programming language made up of four statements:

Assignment: x := e

where x is a variable and e is an arithmetic expression.

Sequencing: P;Q

The language $\mathcal L$ is a simple imperative programming language made up of four statements:

Assignment: x := e

where x is a variable and e is an arithmetic expression.

Sequencing: P;Q

Conditional: if g then P else Q fi

where g is a boolean expression.

The language $\mathcal L$ is a simple imperative programming language made up of four statements:

Assignment: x := e

where x is a variable and e is an arithmetic expression.

Sequencing: P;Q

Conditional: if g then P else Q fi

where g is a boolean expression.

While: while g do P od

Factorial in \mathcal{L}

```
i := 0;

m := 1;

while i < N do

i := i + 1;

m := m * i

od
```

Summary

- ullet \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Summary

- ullet \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Hoare Logic

We are going to define what's called a *Hoare Logic* for \mathcal{L} to allow us to prove properties of our program. We write a *Hoare triple* judgement as:

$$\{\varphi\} P \{\psi\}$$

Where φ and ψ are logical formulae about states, called *assertions*, and P is a program. This triple states that if the program P terminates and it successfully evaluates from a starting state satisfying the *precondition* φ , then the result state will satisfy the *postcondition* ψ .

Hoare triple: Examples

$$\{(x = 0)\} x := 1 \{(x = 1)\}$$

Hoare triple: Examples

$$\{(x = 0)\} x := 1 \{(x = 1)\}$$

 $\{(x = 499)\} x := x + 1 \{(x = 500)\}$

Hoare triple: Examples

$$\{(x = 0)\} x := 1 \{(x = 1)\}$$
$$\{(x = 499)\} x := x + 1 \{(x = 500)\}$$
$$\{(x > 0)\} y := 0 - x \{(y < 0) \land (x \neq y)\}$$

Hoare triple: Factorial Examples

```
\{N \ge 0\}

i := 0;

m := 1;

while i < N do

i := i + 1;

m := m * i

od

\{m = N!\}
```

Summary

- ullet \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Motivation

Question

We know what we want informally; how do we establish when a triple is valid?

Motivation

Question

We know what we want informally; how do we establish when a triple is valid?

Develop a semantics, OR

Hoare logic consists of one axiom and four inference rules for deriving Hoare triples.

Motivation

Question

We know what we want informally; how do we establish when a triple is valid?

- Develop a semantics, OR
- Derive the triple in a syntactic manner (i.e. Hoare proof)

Hoare logic consists of one axiom and four inference rules for deriving Hoare triples.

Assignment

$$\frac{}{\{\varphi[e/x]\}\,x:=e\,\{\varphi\}}\quad \text{(assign)}$$

Intuition:

If x has property φ after executing the assignment; then e must have property φ before executing the assignment

$$\{(y = 0)\} x := y \{(x = 0)\}$$

$$\{(y = 0)\} x := y \{(x = 0)\}$$

 $\{x := y \{(x = y)\}\}$

$$\{(y = 0)\} x := y \{(x = 0)\}$$

 $\{(y = y)\} x := y \{(x = y)\}$

$$\{(y = 0)\} x := y \{(x = 0)\}$$

 $\{(y = y)\} x := y \{(x = y)\}$
 $\{x := 1 \{(x < 2)\}$

$$\{(y = 0)\} x := y \{(x = 0)\}$$
$$\{(y = y)\} x := y \{(x = y)\}$$
$$\{(1 < 2)\} x := 1 \{(x < 2)\}$$
$$\{(y = 3)\} x := y \{(x > 2)\}$$

$$\{(y = 0)\} x := y \{(x = 0)\}$$

$$\{(y = y)\} x := y \{(x = y)\}$$

$$\{(1 < 2)\} x := 1 \{(x < 2)\}$$

$$\{(y = 3)\} x := y \{(x > 2)\}$$
Problem!

Sequence

$$\frac{\{\varphi\} P \{\psi\} \qquad \{\psi\} Q \{\rho\}}{\{\varphi\} P; Q \{\rho\}} \qquad (\text{seq})$$

Intuition:

If the postcondition of ${\it P}$ matches the precondition of ${\it Q}$ we can sequentially combine the two program fragments

Sequence: Example

Sequence: Example

$$\begin{cases} \{ \} x := 0 \{(x = 0)\} & \{(x = 0)\} y := 0 \{(x = y)\} \\ \{ \} x := 0; y := 0 \{(x = y)\} \end{cases}$$
 (seq)

Sequence: Example

$$\frac{\{(0=0)\} x := 0 \{(x=0)\} \qquad \{(x=0)\} y := 0 \{(x=y)\}}{\{(0=0)\} x := 0; y := 0 \{(x=y)\}}$$
 (seq)

Conditional

$$\frac{\{\varphi \land g\} P \{\psi\} \qquad \{\varphi \land \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi } \{\psi\}} \qquad \text{(if)}$$

Intuition:

- When a conditional is executed, either P or Q will be executed.
- ullet If ψ is a postcondition of the conditional, then it must be a postcondition of both branches
- ullet Likewise, if φ is a precondition of the conditional, then it must be a precondition of both branches
- Which branch gets executed depends on g, so we can assume g to be a precondition of P and $\neg g$ to be a precondition of Q.

While

$$\frac{\left\{\varphi \wedge g\right\} P\left\{\varphi\right\}}{\left\{\varphi\right\} \text{ while } g \text{ do } P \text{ od } \left\{\varphi \wedge \neg g\right\}} \quad \text{ (loop)}$$

Intuition:

- φ is a **loop invariant**. It must be both a pre- and postcondition of P, so that sequences of Ps can be run together.
- If the while loop terminates, g cannot hold.

Consequence

There is one more rule, called the *rule of consequence*, that we need to insert ordinary logical reasoning into our Hoare logic proofs:

$$\frac{\varphi' \to \varphi \qquad \{\varphi\} \ P \{\psi\} \qquad \psi \to \psi'}{\{\varphi'\} \ P \{\psi'\}} \qquad \text{(cons)}$$

Consequence

There is one more rule, called the *rule of consequence*, that we need to insert ordinary logical reasoning into our Hoare logic proofs:

$$\frac{\varphi' \to \varphi \qquad \{\varphi\} P \{\psi\} \qquad \psi \to \psi'}{\{\varphi'\} P \{\psi'\}} \qquad \text{(cons)}$$

Intuition:

- Adding assertions to the precondition makes it more likely the postcondition will be reached
- Removing assertions from the postcondition makes it more likely the postcondition will be reached
- If you can reach the postcondition initially, then you can reach it in the more likely scenario

Back to Assignment Example

$$\{(y=3)\} x := y \{(x > 2)\}$$
 Problem!

Back to Assignment Example

$$\{(y=3)\} x := y \{(x > 2)\}$$
 Problem!

$$\{(y > 2)\}x := y\{(x > 2)\}(assign)$$

Back to Assignment Example

$$\{(y = 3)\} x := y \{(x > 2)\}$$
 Problem!

$$\{(y = 3)\}x := y\{(x > 2)\}\ (assign, cons)$$

 $\{(y > 2)\}x := y\{(x > 2)\}\ (assign)$

$$\{N \geq 0\}$$

$$\begin{aligned} & \{\varphi \wedge g\} \ P \ \{\psi\} \quad \{\varphi \wedge \neg g\} \ Q \ \{\psi\} \\ & \{\varphi\} \ \text{if } g \ \text{then } P \ \text{else } Q \ \text{fi} \ \{\psi\} \end{aligned} \end{aligned}$$

$$\begin{aligned} & i := 0; \\ & m := 1; \end{aligned}$$

$$\begin{aligned} & \{\varphi \mid x := e\} \} \ x := e \ \{\varphi\} \end{aligned}$$

$$\begin{aligned} & \{\varphi \land g\} \ P \ \{\varphi\} \\ & \{\varphi \mid x := e\} \} \ x := e \ \{\varphi\} \end{aligned}$$

$$\begin{aligned} & \{\varphi \land g\} \ P \ \{\varphi\} \\ & \{\varphi\} \ \text{while } g \ \text{do } P \ \text{od } \{\varphi \wedge \neg g\} \end{aligned}$$

$$\begin{aligned} & \{\varphi\} \ P \ \{\alpha\} \quad \{\alpha\} \ Q \ \{\psi\} \\ & \{\varphi\} \ P; Q \ \{\psi\} \end{aligned}$$
 od
$$\{m = N!\}$$

$$\begin{aligned} & \{\varphi' \Rightarrow \varphi \quad \{\varphi\} \ P \ \{\psi'\} \quad \psi \Rightarrow \psi' \\ & \{\varphi'\} \ P \ \{\psi'\} \end{aligned}$$

$$\{N \ge 0\}$$

$$i := 0;$$

$$m := 1;$$

$$\{m = i! \land N \ge 0\}$$
while $i \ne N$ do
$$i := i + 1;$$

$$m := m \times i$$
od
$$\{m = i! \land N \ge 0 \land i = N\}$$

$$\{m = N!\}$$

$$\begin{split} & \{\varphi \wedge g\} \ P \ \{\psi\} \quad \{\varphi \wedge \neg g\} \ Q \ \{\psi\} \\ & \{\varphi\} \ \text{if g then P else Q fi $\{\psi\}$} \\ & \overline{\{\varphi[x := e]\}} \ x := e \ \{\varphi\} \\ & \underline{\{\varphi \wedge g\}} \ P \ \{\varphi\} \\ & \overline{\{\varphi\}} \ \text{while g do P od $\{\varphi \wedge \neg g\}$} \\ & \underline{\{\varphi\}} \ P \ \{\alpha\} \quad \{\alpha\} \ Q \ \{\psi\} \\ & \underline{\{\varphi\}} \ P \ \{\psi\} \quad \psi \Rightarrow \psi' \\ & \underline{\{\varphi'\}} \ P \ \{\psi'\} \end{split}$$

$$\{N \ge 0\} \\ i := 0; \\ m := 1; \\ \{m = i! \land N \ge 0\} \\ \text{while } i \ne N \text{ do} \\ i := i + 1; \\ m := m \times i \\ \{m = i! \land N \ge 0\} \\ \text{od } \{m = i! \land N \ge 0 \land i = N\} \\ \{m = N!\} \\$$

$$\begin{split} & \{\varphi \wedge g\} \ P \ \{\psi\} \quad \{\varphi \wedge \neg g\} \ Q \ \{\psi\} \\ & \{\varphi\} \ \text{if g then P else Q fi } \{\psi\} \\ \\ & \overline{\{\varphi[\mathbf{x} := \mathbf{e}]\}} \ \mathbf{x} := \mathbf{e} \ \{\varphi\} \\ & \underline{\{\varphi \wedge g\}} \ P \ \{\varphi\} \\ & \overline{\{\varphi\}} \ \text{while g do P od } \{\varphi \wedge \neg g\} \\ \\ & \underline{\{\varphi\}} \ P \ \{\alpha\} \qquad \{\alpha\} \ Q \ \{\psi\} \\ & \underline{\{\varphi\}} \ P ; Q \ \{\psi\} \\ \\ & \underline{\{\varphi'\}} \ P \ \{\psi'\} \qquad \psi \Rightarrow \psi' \\ & \underline{\{\varphi'\}} \ P \ \{\psi'\} \end{split}$$

$$\{ N \geq 0 \}$$

$$i := 0;$$

$$m := 1;$$

$$\{ m = i! \land N \geq 0 \}$$
 while $i \neq N$ do $\{ m = i! \land N \geq 0 \land iN \}$
$$i := i + 1;$$

$$\{ m = m \times i \}$$

$$\{ m = i! \land N \geq 0 \}$$
 od $\{ m = i! \land N \geq 0 \land iN \}$
$$\{ \varphi \land g \} \ P \ \{ \varphi \}$$
 while $g \ do \ P \ od \ \{ \varphi \land \neg g \}$
$$\{ \varphi \} \ P \ \{ \varphi \}$$
 while $g \ do \ P \ od \ \{ \varphi \land \neg g \}$
$$\{ \varphi \} \ P \ \{ \varphi \}$$
 od $\{ \varphi \land \neg g \}$
$$\{ \varphi \} \ P \ \{ \varphi \} \ P \ \{ \varphi \}$$
 od $\{ \varphi \land \neg g \}$
$$\{ \varphi \} \ P \ \{ \varphi \} \ P \ \{ \varphi \}$$
 od $\{ \varphi \land \neg g \}$
$$\{ \varphi \} \ P \ \{ \varphi \} \ P \ \{ \varphi \}$$
 od $\{ \varphi \land \neg g \}$ od $\{ \varphi \land \neg g \} \}$ od $\{ \varphi \land \neg g \}$ od $\{ \varphi \land \neg g \} \}$ od $\{ \varphi \land \neg$

$$\{N \ge 0\}$$

$$i := 0;$$

$$m := 1;$$

$$\{m = i! \land N \ge 0\}$$
while $i \ne N$ do $\{m = i! \land N \ge 0 \land iN\}$

$$i := i + 1;$$

$$\{m \times i = i! \land N \ge 0\}$$

$$m := m \times i$$

$$\{m = i! \land N \ge 0\}$$
od $\{m = i! \land N \ge 0 \land i = N\}$

$$\{m = N!\}$$

$$\begin{split} & \{\varphi \wedge g\} \ P \ \{\psi\} \quad \{\varphi \wedge \neg g\} \ Q \ \{\psi\} \\ & \{\varphi\} \ \text{if g then P else Q fi $\{\psi\}$} \\ & \overline{\{\varphi[x := e]\}} \ x := e \ \{\varphi\} \\ & \underline{\{\varphi \wedge g\}} \ P \ \{\varphi\} \\ & \overline{\{\varphi\}} \ \text{while g do P od $\{\varphi \wedge \neg g\}$} \\ & \underline{\{\varphi\}} \ P \ \{\alpha\} \quad \{\alpha\} \ Q \ \{\psi\} \\ & \underline{\{\varphi\}} \ P \ \{\psi\} \quad \psi \Rightarrow \psi' \\ & \underline{\{\varphi'\}} \ P \ \{\psi'\} \end{split}$$

$$\{ N \geq 0 \} \\ i := 0; \\ m := 1; \\ \{ m = i! \land N \geq 0 \} \\ \text{while } i \neq N \text{ do } \{ m = i! \land N \geq 0 \land iN \} \\ \{ m \times (i+1) = (i+1)! \land N \geq 0 \} \\ i := i+1; \\ \{ m \times i = i! \land N \geq 0 \} \\ m := m \times i \\ \{ m = i! \land N \geq 0 \} \\ \text{od } \{ m = i! \land N \geq 0 \land i = N \} \\ \{ m = N! \}$$

$$\begin{split} &\{\varphi \wedge g\} \ P \ \{\psi\} \quad \{\varphi \wedge \neg g\} \ Q \ \{\psi\} \\ &\{\varphi\} \ \text{if } g \ \text{then } P \ \text{else } Q \ \text{fi} \ \{\psi\} \\ \\ &\overline{\{\varphi[\mathbf{x} := \mathbf{e}]\}} \ \mathbf{x} := \mathbf{e} \ \{\varphi\} \\ &\underline{\{\varphi \wedge g\}} \ P \ \{\varphi\} \\ &\overline{\{\varphi\}} \ \text{while } g \ \text{do } P \ \text{od} \ \{\varphi \wedge \neg g\} \\ \\ &\overline{\{\varphi\}} \ P \ \{\alpha\} \qquad \{\alpha\} \ Q \ \{\psi\} \\ &\overline{\{\varphi\}} \ P \ \{\psi\} \qquad \psi \Rightarrow \psi' \\ &\overline{\{\varphi'\}} \ P \ \{\psi'\} \end{split}$$

Let's verify the Factorial program using our Hoare rules:

$$\{N \ge 0\}$$

$$i := 0;$$

$$m := 1;$$

$$\{m = i! \land N \ge 0\}$$
while $i \ne N$ do $\{m = i! \land N \ge 0 \land iN\}$

$$\{m \times (i + 1) = (i + 1)! \land N \ge 0\}$$

$$i := i + 1;$$

$$\{m \times i = i! \land N \ge 0\}$$

$$m := m \times i$$

$$\{m = i! \land N \ge 0\}$$
od $\{m = i! \land N \ge 0 \land i = N\}$

$$\{m = N!\}$$

$$\begin{split} & \frac{\{\varphi \wedge g\} \ P \ \{\psi\} \quad \{\varphi \wedge \neg g\} \ Q \ \{\psi\}}{\{\varphi\} \ \text{if } g \ \text{then } P \ \text{else } Q \ \text{fi} \ \{\psi\}} \\ & \overline{\{\varphi[x := e]\} \ x := e \ \{\varphi\}} \\ & \underline{\{\varphi \wedge g\} \ P \ \{\varphi\}} \\ & \overline{\{\varphi\} \ \text{while } g \ \text{do } P \ \text{od} \ \{\varphi \wedge \neg g\}} \\ & \underline{\{\varphi\} \ P \ \{\alpha\} \quad \{\alpha\} \ Q \ \{\psi\}} \\ & \underline{\{\varphi\} \ P \ \{\varphi\} \ P \ \{\psi\} \quad \psi \Rightarrow \psi'} \\ & \underline{\{\varphi'\} \ P \ \{\psi'\}} \end{split}$$

Let's verify the Factorial program using our Hoare rules:

$$\{N \geq 0\}$$

$$i := 0;$$

$$m := 1; \{m = i! \land N \geq 0\}$$

$$\{m = i! \land N \geq 0\}$$

$$\{m = i! \land N \geq 0\}$$
 while $i \neq N$ do $\{m = i! \land N \geq 0 \land iN\}$
$$\{m \times (i+1) = (i+1)! \land N \geq 0\}$$
 i $:= i+1;$
$$\{m \times i = i! \land N \geq 0\}$$
 m $:= m \times i$
$$\{m = i! \land N \geq 0\}$$
 od $\{m = i! \land N \geq 0 \land i = N\}$
$$\{m = N!\}$$

$$\{\varphi \land g\} P \{\varphi\}$$
 while g do P od $\{\varphi \land \neg g\}$
$$\{\varphi\} P \{\alpha\} \quad \{\alpha\} Q \{\psi\} \}$$

$$\{\varphi\} P \{\varphi\} P \{\varphi\} \quad \{\varphi\} P \{\psi\} \quad \psi \Rightarrow \psi' \}$$

$$\{\varphi' \Rightarrow \varphi \quad \{\varphi\} P \{\psi'\} \quad \psi \Rightarrow \psi' \}$$

Let's verify the Factorial program using our Hoare rules:

Let's verify the Factorial program using our Hoare rules:

Let's verify the Factorial program using our Hoare rules:

Practice Exercise

```
m := 1;

n := 1;

i := 1;

while i < N do

t := m;

m := n;

n := m + t;

i := i + 1

od
```

Practice Exercise

```
m := 1;
n := 1;
i := 1;
while i < N do
t := m;
m := n;
m := m + t;
i := i + 1
od
```

- What does this \mathcal{L} program P compute?
- What is a valid Hoare triple $\{\varphi\}P\{\psi\}$ of this program?
- Prove using the inference rules and consequence axiom that this Hoare triple is valid.

Summary

- ullet \mathcal{L} : A simple imperative programming language
- Hoare triples (SYNTAX)
- Hoare logic (PROOF)
- Semantics for Hoare logic

Recall

If R and S are binary relations, then the **relational composition** of R and S, R; S is the relation:

$$R; S := \{(a, c) : \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\}$$

If $R \subseteq A \times B$ is a relation, and $X \subseteq A$, then the **image of** X **under** R, R(X) is the subset of B defined as:

$$R(X) := \{b \in B : \exists a \ in X \ \text{such that} \ (a, b) \in R\}.$$

Informal semantics

Hoare logic gives a proof of $\{\varphi\} P \{\psi\}$, that is: $\vdash \{\varphi\} P \{\psi\}$ (axiomatic semantics)

How do we determine when $\{\varphi\} P \{\psi\}$ is **valid**, that is:

$$\models \{\varphi\} P \{\psi\}$$
?

Informal semantics

Hoare logic gives a proof of $\{\varphi\}$ P $\{\psi\}$, that is: \vdash $\{\varphi\}$ P $\{\psi\}$ (axiomatic semantics)

How do we determine when $\{\varphi\} P \{\psi\}$ is **valid**, that is:

$$\models \{\varphi\} P \{\psi\}$$
?

If φ holds in a state of some computational model then ψ holds in the state reached after a successful execution of P.

What is a program?

What is a program?

A function mapping system states to system states

What is a program?

A partial function mapping system states to system states

What is a program?

A relation between system states

What is a state of a computational model?

What is a state of a computational model?

Two approaches:

• Concrete: from a physical perspective

• Abstract: from a mathematical perspective

What is a state of a computational model?

- Concrete: from a physical perspective
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them
- Abstract: from a mathematical perspective

What is a state of a computational model?

- Concrete: from a physical perspective
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them
- Abstract: from a mathematical perspective
 - The pre-/postcondition predicates hold in a state
 - ⇒ States are logical interpretations (Model + Environment)

What is a state of a computational model?

- Concrete: from a physical perspective
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them
- Abstract: from a mathematical perspective
 - The pre-/postcondition predicates hold in a state
 - \Rightarrow States are **logical interpretations** (Model + Environment)
 - There is only one model of interest: standard interpretations of arithmetical symbols

What is a state of a computational model?

- Concrete: from a physical perspective
 - States are memory configurations, register contents, etc.
 - Store of variables and the values associated with them
- Abstract: from a mathematical perspective
 - The pre-/postcondition predicates hold in a state
 - \Rightarrow States are **logical interpretations** (Model + Environment)
 - There is only one model of interest: standard interpretations of arithmetical symbols
 - ⇒ States are fully determined by **environments**
 - ⇒ States are functions that map variables to values

Informal semantics: States and Programs

Informal semantics: States and Programs

Semantics for \mathcal{L}

An **environment** or **state** is a function from variables to numeric values. We denote by Env the set of all environments.

NB

An environment, η , assigns a numeric value $[\![e]\!]^\eta$ to all expressions e, and a boolean value $[\![b]\!]^\eta$ to all boolean expressions b.

Semantics for \mathcal{L}

An **environment** or **state** is a function from variables to numeric values. We denote by Env the set of all environments.

NB

An environment, η , assigns a numeric value $[\![e]\!]^{\eta}$ to all expressions e, and a boolean value $[\![b]\!]^{\eta}$ to all boolean expressions b.

Given a program P of \mathcal{L} , we define $[\![P]\!]$ to be a **binary relation** on E_{NV} in the following manner...

Assignment

$$(\eta,\eta')\in \llbracket x:=e\rrbracket \quad \text{if, and only if} \quad \eta'=\eta[x\mapsto \llbracket e\rrbracket^\eta]$$

Assignment: [z := 2]

Sequencing

$$[\![P;Q]\!] = [\![P]\!]; [\![Q]\!]$$

where, on the RHS, ; is relational composition.

Conditional, first attempt

$$\llbracket \text{if } b \text{ then } P \text{ else } Q \text{ fi} \rrbracket = \left\{ \begin{array}{l} \llbracket P \rrbracket \\ \llbracket Q \rrbracket \end{array} \right. \quad \text{if } \llbracket b \rrbracket^{\eta} = \text{true} \\ \text{otherwise.} \end{array}$$

Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of Env:

$$\langle b
angle = \{ \eta \, : \, \llbracket b
rbracket^{\eta} = { true} \}$$

This can be extended to a binary relation (i.e. a program):

$$\llbracket b \rrbracket = \{ (\eta, \eta) : \eta \in \langle b \rangle \}$$

Detour: Predicates as programs

A boolean expression b defines a subset (or unary relation) of Env:

$$\langle b \rangle = \{ \eta : \llbracket b \rrbracket^{\eta} = \mathtt{true} \}$$

This can be extended to a binary relation (i.e. a program):

$$\llbracket b \rrbracket = \{ (\eta, \eta) : \eta \in \langle b \rangle \}$$

Intuitively, b corresponds to the program

if b then skip else \perp fi

Conditional, better attempt

$$\llbracket \text{if } b \text{ then } P \text{ else } Q \text{ fi} \rrbracket = \llbracket b; P \rrbracket \cup \llbracket \neg b; Q \rrbracket$$

while b do P od

- Do 0 or more executions of P while b holds
- Terminate when b does not hold

while b do P od

- Do 0 or more executions of (b; P)
- Terminate with an execution of $\neg b$

while b do P od

- Do 0 or more executions of (b; P)
- Terminate with an execution of $\neg b$

How to do "0 or more" executions of (b; P)?

Transitive closure

Given a binary relation $R \subseteq E \times E$, the *transitive closure of* R, R^* is defined to be the limit of the sequence

$$R^0 \cup R^1 \cup R^2 \cdots$$

where

- $R^0 = \Delta$, the diagonal relation
- $R^{n+1} = R^n$; R

NB

- R* is the smallest transitive relation which contains R
- Related to the Kleene star operation seen in languages: Σ^*

Transitive closure

Given a binary relation $R \subseteq E \times E$, the *transitive closure of* R, R^* is defined to be the limit of the sequence

$$R^0 \cup R^1 \cup R^2 \cdots$$

where

- $R^0 = \Delta$, the diagonal relation
- $R^{n+1} = R^n$; R

NB

- R* is the smallest transitive relation which contains R
- Related to the Kleene star operation seen in languages: Σ^*

Technically, R^* is the **least-fixed point** of $f(X) = \Delta \cup X$; R

$$\llbracket \mathsf{while}\ b\ \mathsf{do}\ P\ \mathsf{od} \rrbracket = \llbracket b; P \rrbracket^*; \llbracket \neg b \rrbracket$$

- Do 0 or more executions of (b; P)
- Conclude with an execution of $\neg b$

A Hoare triple is **valid**, written $\models \{\varphi\} P \{\psi\}$ if

$$\llbracket P \rrbracket (\langle \varphi \rangle) \subseteq \langle \psi \rangle.$$

That is, the relational image under $[\![P]\!]$ of the set of states where φ holds is contained in the set of states where ψ holds.

Soundness of Hoare Logic

Hoare Logic is sound with respect to the semantics given. That is,

Theorem

$$\mathit{If} \vdash \{\varphi\} \, \mathit{P} \, \{\psi\} \, \mathit{then} \models \{\varphi\} \, \mathit{P} \, \{\psi\}$$

Summary

- Set theory revisited
- Soundness of Hoare Logic
- Completeness of Hoare Logic

Summary

- Set theory revisited
- Soundness of Hoare Logic
- Completeness of Hoare Logic

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

- **1** If $A \subseteq B$ then $R(A) \subseteq R(B)$

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

- ① If $A \subseteq B$ then $R(A) \subseteq R(B)$

Proof (a):

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

- ① If $A \subseteq B$ then $R(A) \subseteq R(B)$

Proof (a):

$$y \in R(A) \Leftrightarrow \exists x \in A \text{ such that } (x, y) \in R$$

 $\Rightarrow \exists x \in B \text{ such that } (x, y) \in R$
 $\Leftrightarrow y \in R(B)$

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

- ① If $A \subseteq B$ then $R(A) \subseteq R(B)$

Proof (b):

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

- ① If $A \subseteq B$ then $R(A) \subseteq R(B)$
- (S(A)) = (S; R)(A)

Proof (b):

$$y \in R(A) \cup S(A) \Leftrightarrow y \in R(A) \text{ or } y \in S(A)$$

 $\Leftrightarrow \exists x \in A \text{ s.t. } (x,y) \in R \text{ or } \exists x \in A \text{ s.t. } (x,y) \in S$
 $\Leftrightarrow \exists x \in A \text{ s.t. } (x,y) \in R \text{ or } (x,y) \in S$
 $\Leftrightarrow \exists x \in A \text{ s.t. } (x,y) \in (R \cup S)$
 $\Leftrightarrow y \in (R \cup S)(A)$

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

- ① If $A \subseteq B$ then $R(A) \subseteq R(B)$

Proof (c):

Lemma

For any binary relations $R, S \subseteq X \times Y$ and subsets $A, B \subseteq X$:

- ① If $A \subseteq B$ then $R(A) \subseteq R(B)$

Proof (c):

$$z \in R(S(A)) \Leftrightarrow \exists y \in S(A) \text{ s.t. } (y,z) \in R$$

 $\Leftrightarrow \exists x \in A, y \in S(A) \text{ s.t. } (x,y) \in S \text{ and } (y,z) \in R$
 $\Leftrightarrow \exists x \in A \text{ s.t. } (x,z) \in (S;R)$
 $\Leftrightarrow z \in (S;R)(A)$

Corollary

If $R(A) \subseteq A$ then $R^*(A) \subseteq A$

Corollary

If $R(A) \subseteq A$ then $R^*(A) \subseteq A$

Proof:

Corollary

If
$$R(A) \subseteq A$$
 then $R^*(A) \subseteq A$

Proof:

$$R(A) \subseteq A \Rightarrow R^{i+1}(A) = R^{i}(R(A)) \subseteq R^{i}(A)$$

$$\Rightarrow R^{i+1}(A) \subseteq R(A) \subseteq A$$
So $R^{*}(A) = \left(\bigcup_{i=0}^{\infty} R^{i}\right)(A)$

$$= \bigcup_{i=0}^{\infty} R^{i}(A)$$

$$\subset A$$

Summary

- Set theory revisited
- Soundness of Hoare Logic
- Completeness of Hoare Logic

Soundness of Hoare Logic

Theorem

 $\mathit{If} \vdash \{\varphi\} \, \mathit{P} \, \{\psi\} \, \mathit{then} \models \{\varphi\} \, \mathit{P} \, \{\psi\}$

Soundness of Hoare Logic

Theorem

$$\mathit{If} \vdash \{\varphi\} \, \mathit{P} \, \{\psi\} \, \mathit{then} \models \{\varphi\} \, \mathit{P} \, \{\psi\}$$

Proof:

Soundness of Hoare Logic

Theorem

$$\mathit{If} \vdash \{\varphi\} \, \mathit{P} \, \{\psi\} \, \, \mathit{then} \models \{\varphi\} \, \mathit{P} \, \{\psi\}$$

Proof:

By induction on the structure of the proof.

$$\frac{}{\{\varphi[e/x]\}\,x:=e\,\{\varphi\}}\quad \text{(ass)}$$

$$\frac{}{\{\varphi[e/x]\}\,x:=e\,\{\varphi\}}\quad \text{(ass)}$$

Need to show $\{\varphi[e/x]\}x:=e\{\varphi\}$ is always valid. That is,

$$\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$$

$$\frac{}{\{\varphi[e/x]\}\,x := e\,\{\varphi\}} \quad \text{(ass)}$$

Need to show $\{\varphi[e/x]\}x := e\{\varphi\}$ is always valid. That is,

$$\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$$

Observation: $\llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'}$ where $\eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$

$$\frac{}{\left\{\varphi[e/x]\right\}x:=e\left\{\varphi\right\}} \quad \text{(ass)}$$

Need to show $\{\varphi[e/x]\}x := e\{\varphi\}$ is always valid. That is,

$$\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$$

Observation: $\llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'}$ where $\eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$

So if $\eta \in \langle \varphi[e/x] \rangle$ then $\eta' \in \langle \varphi \rangle$

$$\frac{}{\left\{\varphi[e/x]\right\}x:=e\left\{\varphi\right\}} \quad \text{(ass)}$$

Need to show $\{\varphi[e/x]\}x := e\{\varphi\}$ is always valid. That is,

$$\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$$

Observation: $\llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'}$ where $\eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$

So if $\eta \in \langle \varphi[e/x] \rangle$ then $\eta' \in \langle \varphi \rangle$

Recall: $(\eta, \eta'') \in \llbracket x := e \rrbracket$ if and only if $\eta'' = \eta [x \mapsto \llbracket e \rrbracket^{\eta}]$,

$$\frac{}{\left\{\varphi[e/x]\right\}x:=e\left\{\varphi\right\}} \quad \text{(ass)}$$

Need to show $\{\varphi[e/x]\}x := e\{\varphi\}$ is always valid. That is,

$$\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$$

Observation: $\llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'}$ where $\eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$

So if $\eta \in \langle \varphi[e/x] \rangle$ then $\eta' \in \langle \varphi \rangle$

Recall: $(\eta, \eta'') \in \llbracket x := e \rrbracket$ if and only if $\eta'' = \eta [x \mapsto \llbracket e \rrbracket^{\eta}]$,

So $\llbracket x := e \rrbracket (\eta) \in \langle \varphi \rangle$ for all $\eta \in \langle \varphi [e/x] \rangle$

$$\frac{}{\left\{\varphi[e/x]\right\}x:=e\left\{\varphi\right\}} \quad \text{(ass)}$$

Need to show $\{\varphi[e/x]\}x := e\{\varphi\}$ is always valid. That is,

$$\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle.$$

Observation: $\llbracket \varphi[e/x] \rrbracket^{\eta} = \llbracket \varphi \rrbracket^{\eta'}$ where $\eta' = \eta[x \mapsto \llbracket e \rrbracket^{\eta}]$

So if
$$\eta \in \langle \varphi[e/x] \rangle$$
 then $\eta' \in \langle \varphi \rangle$

Recall: $(\eta, \eta'') \in \llbracket x := e \rrbracket$ if and only if $\eta'' = \eta [x \mapsto \llbracket e \rrbracket^{\eta}]$,

So
$$\llbracket x := e \rrbracket(\eta) \in \langle \varphi \rangle$$
 for all $\eta \in \langle \varphi[e/x] \rangle$

So
$$\llbracket x := e \rrbracket (\langle \varphi[e/x] \rangle) \subseteq \langle \varphi \rangle$$

$$\frac{\left\{\varphi\right\}P\left\{\psi\right\} \quad \left\{\psi\right\}Q\left\{\rho\right\}}{\left\{\varphi\right\}P;\,Q\left\{\rho\right\}} \quad \text{(seq)}$$

$$\frac{\left\{\varphi\right\} P\left\{\psi\right\} \quad \left\{\psi\right\} Q\left\{\rho\right\}}{\left\{\varphi\right\} P; \, Q\left\{\rho\right\}} \quad \text{(seq)}$$

Assume $\{\varphi\} \mbox{\it P} \{\psi\}$ and $\{\psi\} \mbox{\it Q} \{\rho\}$ are valid. Need to show that $\{\varphi\} \mbox{\it P}; \mbox{\it Q} \{\rho\}$ is valid.

$$\frac{\left\{\varphi\right\} P\left\{\psi\right\} \quad \left\{\psi\right\} Q\left\{\rho\right\}}{\left\{\varphi\right\} P; \ Q\left\{\rho\right\}} \quad \text{ (seq)}$$

Assume $\{\varphi\} \mbox{\it P} \{\psi\}$ and $\{\psi\} \mbox{\it Q} \{\rho\}$ are valid. Need to show that $\{\varphi\} \mbox{\it P}; \mbox{\it Q} \{\rho\}$ is valid.

$$\mathsf{Recall:} \ \llbracket P; \, Q \rrbracket = \llbracket P \rrbracket; \llbracket Q \rrbracket$$

$$\frac{\left\{\varphi\right\} P\left\{\psi\right\} \quad \left\{\psi\right\} Q\left\{\rho\right\}}{\left\{\varphi\right\} P; \ Q\left\{\rho\right\}} \quad \text{ (seq)}$$

Assume $\{\varphi\}$ P $\{\psi\}$ and $\{\psi\}$ Q $\{\rho\}$ are valid. Need to show that $\{\varphi\}$ P; Q $\{\rho\}$ is valid.

Recall:
$$\llbracket P;Q \rrbracket = \llbracket P \rrbracket; \llbracket Q \rrbracket$$

So:
$$[P; Q](\langle \varphi \rangle) = [Q]([P](\langle \varphi \rangle))$$
 (see Lemma 1(c))

$$\frac{\{\varphi\} P \{\psi\} \quad \{\psi\} Q \{\rho\}}{\{\varphi\} P; Q \{\rho\}} \quad \text{(seq)}$$

Assume $\{\varphi\}$ P $\{\psi\}$ and $\{\psi\}$ Q $\{\rho\}$ are valid. Need to show that $\{\varphi\}$ P; Q $\{\rho\}$ is valid.

Recall:
$$[\![P;Q]\!] = [\![P]\!]; [\![Q]\!]$$

So:
$$[P; Q](\langle \varphi \rangle) = [Q]([P](\langle \varphi \rangle))$$
 (see Lemma 1(c))

By IH:
$$\llbracket P \rrbracket (\langle \varphi \rangle) \subseteq \langle \psi \rangle$$
 and $\llbracket Q \rrbracket (\langle \psi \rangle) \subseteq \langle \rho \rangle$

$$\frac{\{\varphi\} P \{\psi\} \quad \{\psi\} Q \{\rho\}}{\{\varphi\} P; Q \{\rho\}} \quad \text{(seq)}$$

Assume $\{\varphi\}$ P $\{\psi\}$ and $\{\psi\}$ Q $\{\rho\}$ are valid. Need to show that $\{\varphi\}$ P; Q $\{\rho\}$ is valid.

Recall:
$$[P; Q] = [P]; [Q]$$

So:
$$[P; Q](\langle \varphi \rangle) = [Q]([P](\langle \varphi \rangle))$$
 (see Lemma 1(c))

By IH:
$$\llbracket P \rrbracket (\langle \varphi \rangle) \subseteq \langle \psi \rangle$$
 and $\llbracket Q \rrbracket (\langle \psi \rangle) \subseteq \langle \rho \rangle$

So:
$$[\![Q]\!]([\![P]\!](\langle \varphi \rangle)) \subseteq [\![Q]\!](\langle \psi \rangle) \subseteq \langle \rho \rangle$$
 (see Lemma 1(a))

Lemma

For $R \subseteq \text{Env} \times \text{Env}$, predicates φ and ψ , and $X \subseteq \text{Env}$:

Lemma

For $R \subseteq \text{Env} \times \text{Env}$, predicates φ and ψ , and $X \subseteq \text{Env}$:

Proof (a):

Lemma

For $R \subseteq \text{Env} \times \text{Env}$, predicates φ and ψ , and $X \subseteq \text{Env}$:

Proof (a):

$$\eta' \in \llbracket \varphi \rrbracket(X) \quad \Leftrightarrow \quad \exists \eta \in X \text{ s.t. } (\eta, \eta') \in \llbracket \varphi \rrbracket$$
$$\Leftrightarrow \quad \exists \eta \in X \text{ s.t. } \eta = \eta' \text{ and } \eta \in \langle \varphi \rangle$$
$$\Leftrightarrow \quad \eta' \in X \cap \langle \varphi \rangle$$

Lemma

For $R \subseteq \text{Env} \times \text{Env}$, predicates φ and ψ , and $X \subseteq \text{Env}$:

Proof (b):

$$\begin{split} \langle \varphi \wedge \psi \rangle &= \langle \varphi \rangle \cap \langle \psi \rangle = \llbracket \varphi \rrbracket (\langle \psi \rangle) \\ \text{So } R(\langle \varphi \wedge \psi \rangle) &= R(\llbracket \varphi \rrbracket (\langle \psi \rangle)) \\ &= (\llbracket \varphi \rrbracket; R)(\langle \psi \rangle) \quad \text{(see Lemma 1(b))} \end{split}$$

$$\frac{\{\varphi \land g\} P \{\psi\} \qquad \{\varphi \land \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi } \{\psi\}} \qquad \text{(if)}$$

$$\frac{\{\varphi \land g\} P \{\psi\} \qquad \{\varphi \land \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi } \{\psi\}} \qquad \text{(if)}$$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

$$\frac{\{\varphi \land g\} P \{\psi\} \qquad \{\varphi \land \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi } \{\psi\}} \qquad \text{(if)}$$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

Recall:
$$\llbracket \text{if } g \text{ then } P \text{ else } Q \text{ fi} \rrbracket = \llbracket g; P \rrbracket \cup \llbracket \neg g; Q \rrbracket$$

$$\frac{\{\varphi \wedge g\} P \{\psi\} \qquad \{\varphi \wedge \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi } \{\psi\}} \qquad \text{(if)}$$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

Recall:
$$\llbracket \text{if } g \text{ then } P \text{ else } Q \text{ fi} \rrbracket = \llbracket g; P \rrbracket \cup \llbracket \neg g; Q \rrbracket$$

[if g then P else Q fi]
$$(\langle \varphi \rangle)$$

$$\frac{\{\varphi \land g\} P \{\psi\} \qquad \{\varphi \land \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi } \{\psi\}} \qquad \text{(if)}$$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

Recall: $\llbracket \text{if } g \text{ then } P \text{ else } Q \text{ fi} \rrbracket = \llbracket g; P \rrbracket \cup \llbracket \neg g; Q \rrbracket$

$$\begin{split} & \text{ $\|$ if g then P else Q fi} & \text{ $\|(\langle\varphi\rangle)$} \\ & = & \text{ $\|g$; P} & \text{ $\|(\langle\varphi\rangle)$} \cup & \text{ $\|\neg g$; Q} & \text{ $\|(\langle\varphi\rangle)$} & \text{ $($see Lemma 1(b))$} \end{split}$$

$$\frac{\{\varphi \land g\} P \{\psi\} \qquad \{\varphi \land \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi} \{\psi\}} \qquad \text{(if)}$$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

Recall: $\llbracket \text{if } g \text{ then } P \text{ else } Q \text{ fi} \rrbracket = \llbracket g; P \rrbracket \cup \llbracket \neg g; Q \rrbracket$

```
\begin{split} & \text{ [[if $g$ then $P$ else $Q$ fi]]($\langle \varphi \rangle$)} \\ & = \text{ [[$g$; $P$]]($\langle \varphi \rangle$)} \cup \text{ [[$\neg g$; $Q$]]($\langle \varphi \rangle$)} & \text{ (see Lemma 1(b))} \\ & = \text{ [[$P$]]($\langle g \wedge \varphi \rangle$)} \cup \text{ [[$Q$]]($\langle \neg g \wedge \varphi \rangle$)} & \text{ (see Lemma 2(b))} \end{split}
```

$$\frac{\{\varphi \land g\} P \{\psi\} \qquad \{\varphi \land \neg g\} Q \{\psi\}}{\{\varphi\} \text{ if } g \text{ then } P \text{ else } Q \text{ fi} \{\psi\}} \qquad \text{(if)}$$

Assume $\{\varphi \land g\} P \{\psi\}$ and $\{\varphi \land \neg g\} Q \{\psi\}$ are valid. Need to show that $\{\varphi\}$ if g then P else Q fi $\{\psi\}$ is valid.

Recall: $\llbracket \text{if } g \text{ then } P \text{ else } Q \text{ fi} \rrbracket = \llbracket g; P \rrbracket \cup \llbracket \neg g; Q \rrbracket$

$$\begin{split} & \text{ [[if g then P else Q fi]]($\langle \varphi \rangle$)} \\ &= \text{ [[g; P]]($\langle \varphi \rangle$)} \cup \text{ [[$\neg g$; Q]]($\langle \varphi \rangle$)} & \text{ (see Lemma 1(b))} \\ &= \text{ [[P]]($\langle g \wedge \varphi \rangle$)} \cup \text{ [[$Q$]]($\langle \neg g \wedge \varphi \rangle$)} & \text{ (see Lemma 2(b))} \\ &\subseteq \langle \psi \rangle & \text{ (by IH)} \end{split}$$

$$\frac{\left\{\varphi \wedge g\right\} P\left\{\varphi\right\}}{\left\{\varphi\right\} \text{ while } g \text{ do } P \text{ od } \left\{\varphi \wedge \neg g\right\}} \quad \text{ (loop)}$$

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

Assume $\{\varphi \land g\} P \{\varphi\}$ is valid. Need to show that $\{\varphi\}$ while g do P od $\{\varphi \land \neg g\}$ is valid.

Recall: $\llbracket \text{while } g \text{ do } P \text{ od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$

$$\frac{\left\{\varphi \wedge g\right\} P\left\{\varphi\right\}}{\left\{\varphi\right\} \text{ while } g \text{ do } P \text{ od } \left\{\varphi \wedge \neg g\right\}} \qquad \text{(loop)}$$

Recall:
$$\llbracket \text{while } g \text{ do } P \text{ od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$$

$$[g; P](\langle \varphi \rangle) = [P](\langle g \wedge \varphi \rangle)$$
 (see Lemma 2(b))

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

Recall:
$$\llbracket \text{while } g \text{ do } P \text{ od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$$

$$[g; P](\langle \varphi \rangle) = [P](\langle g \wedge \varphi \rangle)$$
 (see Lemma 2(b))
$$\subseteq \langle \varphi \rangle$$
 (IH)

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

Recall:
$$\llbracket \text{while } g \text{ do } P \text{ od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$$

$$[g; P](\langle \varphi \rangle) = [P](\langle g \wedge \varphi \rangle)$$
 (see Lemma 2(b))

$$\subseteq \langle \varphi \rangle$$
 (IH)

So
$$[g; P]^*(\langle \varphi \rangle) \subseteq \langle \varphi \rangle$$
 (see Corollary)

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

Recall:
$$\llbracket \text{while } g \text{ do } P \text{ od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$$

$$[g; P](\langle \varphi \rangle) = [P](\langle g \wedge \varphi \rangle)$$
 (see Lemma 2(b))

$$\subseteq \langle \varphi \rangle$$
 (IH)

So
$$[g; P]^*(\langle \varphi \rangle) \subseteq \langle \varphi \rangle$$
 (see Corollary)

So
$$\llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket (\langle \varphi \rangle) = \llbracket \neg g \rrbracket (\llbracket g; P \rrbracket^* (\langle \varphi \rangle))$$
 (see Lemma 1(c))

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

Assume $\{\varphi \land g\} P \{\varphi\}$ is valid. Need to show that $\{\varphi\}$ while g do P od $\{\varphi \land \neg g\}$ is valid.

Recall:
$$\llbracket \text{while } g \text{ do } P \text{ od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$$
 $\qquad \llbracket g; P \rrbracket (\langle \varphi \rangle) = \llbracket P \rrbracket (\langle g \wedge \varphi \rangle) \qquad \text{(see Lemma 2(b))}$ $\qquad \subseteq \langle \varphi \rangle \qquad \qquad \text{(IH)}$ So $\llbracket g; P \rrbracket^* (\langle \varphi \rangle) \subseteq \langle \varphi \rangle \qquad \qquad \text{(see Corollary)}$ So $\llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket (\langle \varphi \rangle) = \llbracket \neg g \rrbracket (\llbracket g; P \rrbracket^* (\langle \varphi \rangle)) \qquad \text{(see Lemma 1(c))}$

 $\subseteq \llbracket \neg g \rrbracket (\langle \varphi \rangle)$

$$\frac{\{\varphi \land g\} P \{\varphi\}}{\{\varphi\} \text{ while } g \text{ do } P \text{ od } \{\varphi \land \neg g\}} \quad \text{(loop)}$$

Assume $\{\varphi \land g\} P \{\varphi\}$ is valid. Need to show that $\{\varphi\}$ while g do P od $\{\varphi \land \neg g\}$ is valid.

Recall: $\llbracket \text{while } g \text{ do } P \text{ od} \rrbracket = \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket$

$$[g; P](\langle \varphi \rangle) = [P](\langle g \wedge \varphi \rangle)$$
 (see Lemma 2(b))
$$\subseteq \langle \varphi \rangle$$
 (IH)

$$\subseteq \langle \varphi \rangle \tag{see Corollary}$$
So $\llbracket g; P \rrbracket^* (\langle \varphi \rangle) \subseteq \langle \varphi \rangle$

$$\mathsf{So} \ \llbracket g; P \rrbracket^*; \llbracket \neg g \rrbracket (\langle \varphi \rangle) \ = \llbracket \neg g \rrbracket \big(\llbracket g; P \rrbracket^* (\langle \varphi \rangle) \big) \quad \mathsf{(see \ Lemma \ 1(c))}$$

$$\subseteq \llbracket \neg g \rrbracket (\langle \varphi \rangle)$$
 (see Lemma 1(a))

$$\frac{\varphi' \to \varphi \qquad \{\varphi\} P \{\psi\} \qquad \psi \to \psi'}{\{\varphi'\} P \{\psi'\}} \qquad \text{(cons)}$$

$$\frac{\varphi' \to \varphi \qquad \{\varphi\} P \{\psi\} \qquad \psi \to \psi'}{\{\varphi'\} P \{\psi'\}} \qquad \text{(cons)}$$

Assume $\{\varphi\} P \{\psi\}$ is valid and $\varphi' \to \varphi$ and $\psi \to \psi'$. Need to show that $\{\varphi'\} P \{\psi'\}$ is valid.

$$\frac{\varphi' \to \varphi \qquad \{\varphi\} P \{\psi\} \qquad \psi \to \psi'}{\{\varphi'\} P \{\psi'\}} \qquad \text{(cons)}$$

Assume $\{\varphi\} P \{\psi\}$ is valid and $\varphi' \to \varphi$ and $\psi \to \psi'$. Need to show that $\{\varphi'\} P \{\psi'\}$ is valid.

Observe: If $\varphi' \to \varphi$ then $\langle \varphi' \rangle \subseteq \langle \varphi \rangle$

$$\frac{\varphi' \to \varphi \qquad \{\varphi\} P \{\psi\} \qquad \psi \to \psi'}{\{\varphi'\} P \{\psi'\}} \qquad \text{(cons)}$$

Assume $\{\varphi\} P \{\psi\}$ is valid and $\varphi' \to \varphi$ and $\psi \to \psi'$. Need to show that $\{\varphi'\} P \{\psi'\}$ is valid.

Observe: If $\varphi' \to \varphi$ then $\langle \varphi' \rangle \subseteq \langle \varphi \rangle$

$$\llbracket P \rrbracket (\langle \varphi' \rangle) \subseteq \llbracket P \rrbracket (\langle \varphi \rangle) \text{ (see Lemma 1(a))}$$

$$\frac{\varphi' \to \varphi \qquad \{\varphi\} P \{\psi\} \qquad \psi \to \psi'}{\{\varphi'\} P \{\psi'\}} \qquad \text{(cons)}$$

Assume $\{\varphi\} P \{\psi\}$ is valid and $\varphi' \to \varphi$ and $\psi \to \psi'$. Need to show that $\{\varphi'\} P \{\psi'\}$ is valid.

Observe: If $\varphi' \to \varphi$ then $\langle \varphi' \rangle \subseteq \langle \varphi \rangle$

$$\llbracket P \rrbracket (\langle \varphi' \rangle) \subseteq \llbracket P \rrbracket (\langle \varphi \rangle) \text{ (see Lemma 1(a))}$$

$$\subseteq \langle \psi \rangle \text{ (IH)}$$

$$\subseteq \langle \psi' \rangle$$

Soundness of Hoare Logic

Theorem

$$\mathit{If} \vdash \{\varphi\} \, \mathit{P} \, \{\psi\} \, \mathit{then} \models \{\varphi\} \, \mathit{P} \, \{\psi\}$$

Summary

- Set theory revisited
- Soundness of Hoare Logic
- Completeness of Hoare Logic

Theorem (Gödel's Incompleteness Theorem)

There is no proof system that can prove every valid first-order sentence about arithmetic over the natural numbers.

Theorem (Gödel's Incompleteness Theorem)

There is no proof system that can prove every valid first-order sentence about arithmetic over the natural numbers.

⇒ There are true statements that do not have a proof.

Theorem (Gödel's Incompleteness Theorem)

There is no proof system that can prove every valid first-order sentence about arithmetic over the natural numbers.

- ⇒ There are true statements that do not have a proof.
- ⇒ Because of (cons) there are valid triples that result from valid, but unprovable, consequences.

Theorem (Gödel's Incompleteness Theorem)

There is no proof system that can prove every valid first-order sentence about arithmetic over the natural numbers.

- ⇒ There are true statements that do not have a proof.
- ⇒ Because of (cons) there are valid triples that result from valid, but unprovable, consequences.
- ⇒ Hoare Logic is not complete.

Relative completeness of Hoare Logic

Theorem (Relative completeness of Hoare Logic)

With an oracle that decides the validity of predicates,

$$\textit{if} \ \models \left\{\varphi\right\} P \left\{\psi\right\} \ \textit{then} \ \vdash \left\{\varphi\right\} P \left\{\psi\right\}.$$

Need to know for this course

- Write programs in \mathcal{L} .
- Give proofs using the Hoare logic rules (full and outline)
- Definition of [√]
- Definition of composition and transitive closure

